This article was downloaded by:
On: 22 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Asian Natural Products Research

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713454007

Synthesis and antibacterial activity of 11,12-carbamate-3-O-acyl erythromycin derivatives

Peng Xuá; Lu Liua; Wei Hea; Yun Lib; Jian Liu ${ }^{\text {b }}$; Ping-Sheng Lei ${ }^{\text {a }}$
${ }^{a}$ Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China ${ }^{\text {b }}$ Institute of Clinical Pharmacology, Peking University, Beijing, China

To cite this Article Xu, Peng , Liu, Lu, He, Wei, Li, Yun , Liu, Jian and Lei, Ping-Sheng(2009) 'Synthesis and antibacterial activity of 11,12-carbamate-3-O-acyl erythromycin derivatives', Journal of Asian Natural Products Research, 11: 10, 880 - 897

To link to this Article: DOI: 10.1080/10286020903176461
URL: http://dx.doi.org/10.1080/10286020903176461

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


Synthesis and antibacterial activity of 11,12-carbamate-3-O-acyl erythromycin derivatives

Peng Xu ${ }^{\text {a }}$, Lu Liu ${ }^{\text {a }}$, Wei He^{a}, Yun Li^{b}, Jian Liu ${ }^{\mathrm{b}}$ and Ping-Sheng Lei ${ }^{\mathrm{a} *}$
${ }^{a}$ Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China; ${ }^{b}$ Institute of Clinical Pharmacology, Peking University, Beijing 100083, China

(Received 7 June 2009; final version received 9 July 2009)

Abstract

A novel series of acylide derivatives have been synthesized which exhibit in vitro potency against key respiratory pathogens. Modification of position 3 was accomplished by replacing different $3-O$-substituted acyl groups in the macrolide core via a facile procedure. Compounds $\mathbf{7 a}-\mathbf{7 i}$ were eventually yielded by the conjunction of diverse hetero-aryl side chains with the 11-N,12-O-carbamate sub-structure.

Keywords: macrolide; acylide; antibacterial activity; resistant strains

1. Introduction

The increasing resistance of communityacquired respiratory tract infection to many antimicrobials has become a serious problem over the past decades [1]. Resistance is most commonly conferred by ribosomal mutation (erm) or by efflux (mef) mechanism [2]. Many efforts have been made to discover novel 14 -membered [3] and 15 -membered [4] macrolides to address this status. For example, telithromycin [5] and cethromycin [6], known as ketolide, were investigated.

These compounds possess a 3-keto group and a proper side chain which can interact with nucleotide A752 in domain II of the 23 S rRNA, and showed strong activity against major macrolide-resistant strains [7]. It is known that the ketolide series is not the only class of new macrolides for the effective management of respiratory tract infections. Medicinal chemists have synthesized other derivatives of nonketolide families [8-10]. The
synthesis and the antibacterial activity of 3-O-acyl erythromycin derivatives (acylide) were first reported by Asaka et al. [11]. The acylide derivatives showed activity against the erythromycin-susceptible (Ery-S) and -resistant (Ery-R) strains. The study of acylides was mainly focused on the different substitution at position 3 [12], as well as on the modification of the macrolide skeleton [13]. Zhu et al. [14] have reported a series of acylide derivatives with 6-O-carbamoyl. Some of them showed comparable activity as telithromycin against several Ery-R pathogens. This evokes us to synthesis a class of new acylide derivatives with an aryl-substituted 11,12-carbamate group which could have a secondary interaction with domain II of the 23 S rRNA.

In our research, the acyl groups applied at position 3 were proved to have a significant effect for the antibacterial activity, including (3,4-methylenedioxyl)phenyl acetyl group which had been

[^0]published in our previous report [15]. Four typical side chains selected to attach at $11-\mathrm{N}, 12-\mathrm{O}$-carbamate were also representative. The hetero-arylamines used here were 4-phenylbutylamine ($\mathrm{R}^{\prime} 1$), (4-phe-nyl-1H-1-imidazoyl)butylamine ($\mathrm{R}^{\prime} 2$), 4-(3H-imidazoyl(4,5-b)pyridin-3-yl)butylamine ($\mathrm{R}^{\prime} 3$), and 4 -(1 H -imidazoyl(4,5b) pyridin-1-yl)butylamine ($\mathrm{R}^{\prime} 4$) (Figure 1). We hoped that such conjugation might reasonably improve the antibacterial activity against both macrolide-susceptible and -resistant strains.

2. Results and discussion

Scheme 1 indicated the actual synthesis that started with a well-established intermediate 2^{\prime} - O-acetyl-3- O-descladinosyl-6-O-methylerythromycin A (1) [13]. Formation of 11,12-carbonate (2) was carried out with trichloromethyl chloroformate in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and pyridine at $0^{\circ} \mathrm{C}$. Compound 2 was obtained in a yield of 75%.

The 11,12-carbonate acylides 3a-3c were prepared by condensation of 2 with the corresponding carboxylic acid by using 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDC $\cdot \mathrm{HCl}$) and 4-dimethylaminopyridine (DMAP) in dichloromethane. The yields were 61$68 \%$. Compounds $\mathbf{3 a}-\mathbf{3 c}$ could be β-eliminated using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a base in acetone at room temperature to provide the 10,11 -anhydro acylides $\mathbf{4 a}-\mathbf{4 c}$ in yields ranging from 56 to 78%.

Figure 1. Structures of hetero-arylamine.

Subsequently, $\mathbf{4 a}-\mathbf{4 c}$ were treated with excess $1,1^{\prime}$-carbonyldiimidazole (CDI) and sodium hydride in DMF at $-25^{\circ} \mathrm{C}$ to obtain acylimidazolides $\mathbf{5 a}-\mathbf{5 c}$ in yields of $63-67 \%$. The structures of $\mathbf{3 a}-\mathbf{3 c}, \mathbf{4 a}-\mathbf{4 c}$, and 5a-5c were confirmed by ${ }^{13} \mathrm{C}$ NMR and MS spectra. The key intermediates $\mathbf{5 a}-\mathbf{5 c}$ could be readily converted to the desired carbamate compounds 6a-6i by treatment with a primary hetero-arylamine in aqueous acetonitrile, following the method originally developed by Baker et al. [16] (Scheme 2). Compounds 6a-6i were refluxed overnight in methanol to cleave the $2^{\prime}-O$-acetyl group. Compounds $7 \mathbf{a}-7 \mathbf{i}$ were obtained in the yields of $70-$ 94%. The structures of $\mathbf{6 a}-\mathbf{6 i}$ and $7 \mathbf{7 a}-7 \mathbf{i}$ were confirmed by ${ }^{13} \mathrm{C}$ NMR and MS spectra. Some of them were also confirmed by ${ }^{1} \mathrm{H}$ NMR and HR-MS experiments.

The 11-N,12-O-carbamate acylides $7 \mathbf{a}-7 \mathbf{i}$ and reference compounds, clarithromycin, telithromycin, and roxithromycin, were tested against different representative pathogens (Tables 1 and 2). Various macrolide- and multidrugresistant pathogens were tested in order to identify the potence of these acylide analogs. All the methicillin-resistant Staphylococcus aureus (MRSA) and Ery-R strains chosen in this test were constitutively resistant strains supplied by the Ministry of Health National Antimicrobial Resistance Investigation Net (MOHNARIN, Beijing, China). S. aureus, ATCC29213, 01-430, 01-431, and 01-481 were methicillin-susceptible S. aureus (MSSA). S. aureus 01-433, 01-429, and

R'2

R'4

Scheme 1. Synthesis of compounds 5a-5c. Reagents and conditions: (a) trichloromethyl chloroformate, $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pyridine, rt 75%; (b) $\mathrm{EDC} \cdot \mathrm{HCl}$, hetero-arylcarboxylic acid, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $61-68 \%$; (c) DBU, acetone, rt 56-78\%; and (d) $\mathrm{NaH}, \mathrm{CDI}, \mathrm{DMF},-25^{\circ} \mathrm{C}, 63-67 \%$.

01-483 were MRSA. Staphylococcus pneumoniae, ATCC49619, 01-863 and 01-991 were Ery-S strains. S. pneumoniae 01-862 and 01-868 were Ery-R strains. Staphylococcus pyogenes $03-804$ was an Ery-S strain. S. pyogenes 03-474, 03-475, 03-476, and 01-781 were Ery-R strains.
S. pyogenes $03-480$ was an Ery-R strain encoded by the ermB gene. Enterococcus faecalis 03 H 065 and 031076 were Ery-S strains. E. faecalis 03A056, 03A080, and 03A133 were Ery-R strains. All the strains shown in Table 2 were Ery-R strains. The in vitro antibacterial activity was reported

6a,7a $\mathrm{R}=4$-chlorophenylacetyl
$R^{\prime}=4$-phenylbutylamine
$\mathbf{6 b}, 7 \mathrm{~b}$ R = 4-chlorophenylacetyl
$\mathrm{R}^{\prime}=4$-(3H-imidazoly $(4,5-\mathrm{b})$ pyridin-3-yl)
butylamine
6c,7c $\mathrm{R}=4$-chlorophenylacetyl
$\mathrm{R}^{\prime}=(4$-phenyl-1 $\mathrm{H}-1$-imidazoyl)butylamine
6d,7d R = (3-pyridyl)acetyl
$\mathrm{R}^{\prime}=4$-phenylbutylamine
6e, 7e $\mathrm{R}=$ (3-pyridyl)acetyl
$\mathrm{R}^{\prime}=4$ - $(3 \mathrm{H}-$-imidazoly $(4,5-\mathrm{b})$ pyridin- $3-\mathrm{yl}$)
butylamine

6f,7f $\mathrm{R}=$ (3-pyridyl)acetyl
$\mathrm{R}^{\prime}=$ (4-phenyl-1H-1-imidazoyl)butylamine
$\mathbf{6 g}, 7 \mathrm{~g} \mathrm{R}=$ (3-pyridyl)acetyl
$\mathrm{R}^{\prime}=4$-(1H-imidazoyl(4,5-b)pyridin-1-yl)
butylamine
6h,7h R = (3,4-methylenedioxyl)phenyl acetyl
$\mathrm{R}^{\prime}=4$-(1 H -imidazoly $(4,5$-b)pyridin-1-yl)
6i,7i $R=(3,4$-methylenedioxyl)phenyl acetyl
$\mathrm{R}^{\prime}=4$-(3H-imidazoyl(4,5-b)pyridin-3-yl) butylamine

Scheme 2. Synthesis of compounds 7a-7i. Reagents and conditions: (a) primary hetero-arylamine, $\mathrm{CH}_{3} \mathrm{CN}, 50^{\circ} \mathrm{C}$ and (b) MeOH , reflux, $70-94 \%$.

Table 1. Antibacterial activity of acylides $\mathbf{7 a} \mathbf{- 7 f}$.

	MIC $(\mu \mathrm{g} / \mathrm{ml})$						
Pathogens	7a	7b	7c	7d	7e	7f	Clarithromycin
ATCC29213	4	0.25	1	1	0.25	0.25	0.25
01-430 MSSA	4	0.25	1	1	0.125	0.25	0.25
01-431 MSSA	4	0.25	2	1	0.25	0.25	0.25
01-481 MSSA	8	0.5	2	2	1	0.5	0.5
01-433 MRSA	16	16	16	16	16	16	256
01-429 MRSA	8	16	16	16	16	16	256
01-483 MRSA	16	4	8	4	0.5	0.5	256
S. pneumoniae							
ATCC 49619	1	0.125	0.25	0.25	0.031	0.062	0.062
S. pneumoniae							
01-863(Ery-S)	1	0.125	0.5	0.25	0.125	0.062	0.062
01-991(Ery-S)	1	0.25	0.25	0.25	0.016	0.062	0.031
01-862(Ery-R)	16	16	8	16	2	1	256
01-868(Ery-R)	16	16	8	16	2	1	256
S. pyogenes							
03-804(Ery-S)	0.5	0.125	0.5	0.25	0.062	0.125	0.031
03-474(Ery-R)	8	8	16	8	2	2	256
03-475(Ery-R)	8	8	16	8	2	2	256
03-476(Ery-R)	8	8	16	8	2	2	256
03-480(Ery-R)	8	8	16	8	2	2	256
01-781(Ery-R)	8	8	16	8	2	2	256
E. faecalis							
03H065(Ery-S)	1	0.125	1	0.5	0.062	0.125	0.062
03I076(Ery-S)	1	0.125	1	0.5	0.062	0.125	0.062
03A056(Ery-R)	16	16	16	16	4	4	256
03A080(Ery-R)	16	16	16	16	16	8	256
03A133(Ery-R)	16	16	16	16	4	2	256

as minimum inhibitory concentrations (MICs), which were determined by the broth microdilution method as recommended by the National Committee of Clinical Laboratory Standard [17-19].

From Table 1, it appears that all the compounds $7 \mathbf{a}-7 \mathrm{f}$ were active against macrolide-resistant strains. The activity of some compounds against macrolide-susceptible strains was decreased to a certain extent compared with clarithromycin, for example 7a and 7c. Compound 7e almost kept active against macrolide-susceptible strains at the same level as clarithromycin. A comparison of compound 7c with 7 f indicated that the latter was more potent against all the strains tested. A similar trend can be seen for 7a versus 7d and 7b
versus 7e. This suggested that a 3pyridylacetyl at position 3 gave better activity. The structure of the aryl group played an important role in SAR. It seemed that compounds with a fused bicyclic aryl group have more potent activity than compounds with a biaryl group or mono-aryl group. This conclusion could be drawn from the comparison of $\mathbf{7 e}$ with $\mathbf{7 d}$ and $\mathbf{7 f}$.

The best compound in Table 1 (7e) was compared with $\mathbf{7 g}, 7 \mathbf{h}$, and the reference compounds telithromycin and roxithromycin in Table 2. All the three compounds exhibited significant improved activity against Ery-R strains compared with roxithromycin but slightly weaker than telithromycin. As 7 h was the

Table 2. Antibacterial activity of acylides $\mathbf{7 e}, \mathbf{7 g}$, and $\mathbf{7 h}$.

	MIC $(\mu \mathrm{g} / \mathrm{ml})$				
	Pathogens	$\mathbf{7 e}$	$\mathbf{7 g}$	$\mathbf{7 h}$	Telithromycin
S. pneumoniae					Roxithromycin
1	0.25	0.25	0.25	0.125	
2	0.25	0.25	0.25	0.125	4
5	1	1	1	0.25	4
9	1	2	1	0.5	8
S. pyogenes					4
11	0.125	0.25	0.125	0.0625	
14	0.5	1	0.25	0.125	42
15	4	4	2	0.125	4
16	0.25	1	1		4
S. aureus				0.0625	8
30	0.125	0.125	0.125	0.125	8
31	0.25	0.25	0.25	0.03125	8
35	0.0625	0.03125	0.03125	0.03125	16
36	0.0625	0.0625	0.03125		4
Staphylococcus	epidermidis			0.125	
41	0.25	0.5	0.125	0.0625	84
43	0.125	0.25	0.0625	0.0625	8
45	0.125	0.25	0.0625	0.03125	8
47	0.125	0.125	0.0625		2

one which had the most comparable potency with telithromycin, this confirmed our conclusion that attachment of a (3,4-methylenedioxyl)phenyl acetyl at position 3 could get the best in vitro result.

3. Conclusion

In conclusion, a series of novel derivatives of acylide analogs $7 \mathbf{a}-\mathbf{7 i}$ were synthesized and found to have potent activity in vitro against macrolide-resistant pathogens. Especially, 7e, 7g, and 7h had an excellent in vitro antibacterial potency against resistant strains. The SAR study proved that the combination of the $3-O$-acyl and $11-\mathrm{N}$-tethered $11-\mathrm{N}, 12-\mathrm{O}$-carbamate substructure possessed potent antibacterial activity against bacteria resistance. This work provides a new insight into the antibacterial activity of macrolides, which will certainly help the researchers in envisioning new antibacterial agents.

4. Experimental

4.1 General experimental procedures

NMR spectra were recorded on Mercury300 and Mercury-400 spectrometers in CDCl_{3}. The chemical shifts are reported in ppm using TMS as an internal standard. Mass spectra were obtained on a VGZAB2F mass spectrometer for ESI-MS. HRMS was recorded on an Aglient 1100 series LC/MSD TOF. Analytical thin layer chromatography (TLC) was carried out on silica gel $60 \mathrm{~F}_{254}$ plates precoated by the Branch of Qingdao Haiyang Chemical Plant. Chromatography was performed with silica gel H (HG/T2354-92).

In general, organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ or $\mathrm{K}_{2} \mathrm{CO}_{3}$, and evaporation and concentration were carried out under reduced pressure below $40^{\circ} \mathrm{C}$, unless otherwise noted.

Clarithromycin for antibacterial testing was purchased from HUAYI Pharmaceutical Co. (Zhejiang, China). Bacterial strains were from the American Type

Culture Collection (ATCC) as indicated in Table 1, or were clinically isolated from the MOHNARIN.

4.2 Synthesis

4.2.1 2'-O-Acetyl-3-O-descladinosyl-6-O-methylerythromycin A 11,12-cyclic carbonate (2)

To a solution of $\mathbf{1}(14.0 \mathrm{~g}, 22.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (140 ml), trichloromethyl chloroformate ($7.12 \mathrm{ml}, 59.0 \mathrm{mmol}$) and pyridine $(29 \mathrm{ml})$ were added at $0^{\circ} \mathrm{C}$. After stirring for 12 h under N_{2}, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{H}_{2} \mathrm{O}$. The evaporation of the organic solvent gave 19.0 g of the crude product, which was purified by chromatography on a column of silica gel (acetone/petroleum ether/triethylamine) to afford 2 (10.9 g , 75%). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.1$ $\left(4-\mathrm{CH}_{3}\right), 9.9\left(14-\mathrm{CH}_{3}\right), 12.7\left(10-\mathrm{CH}_{3}\right)$, $12.8\left(12-\mathrm{CH}_{3}\right), 15.1\left(2-\mathrm{CH}_{3}\right), 18.2$ (8CH_{3}), $19.1\left(6-\mathrm{CH}_{3}\right), 20.9\left(2^{\prime}-\mathrm{OAc}\right), 21.3$ ($5^{\prime}-\mathrm{CH}_{3}$), 21.9 ($14-\mathrm{C}$), 30.8 ($\left.4^{\prime}-\mathrm{C}\right), 35.8$ ($4-$ C), 37.2 ($10-\mathrm{C}$), 38.4 ($7-\mathrm{C}$), 40.5 ($3^{\prime}-$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 44.0$ (2-C), 45.1 (8-C), 49.4 (6OCH_{3}), 63.0 ($3^{\prime}-\mathrm{C}$), 68.7 ($\left.5^{\prime}-\mathrm{C}\right), 71.3$ ($2^{\prime}-$ C), 74.9 (3-C), 76.7 (13-C), 77.9 (11-C), 80.8 (12-C), 80.9 (5-C), 84.8 (6-C), 99.6 ($\left.1^{\prime}-\mathrm{C}\right), 154.0$ ($11-\mathrm{O}-\mathrm{CO}-\mathrm{O}$), 169.8 ($2^{\prime}-$ OAc), 174.9 (1-C), 212.2 (9-C).

4.2.2 2'-O-Acetyl-3-O-(3-pyridyl)acetyl-3-O-descladinosyl-6-O-
 methylerythromycin A 11,12-cyclic carbonate (3a)

To a solution of $2(50 \mathrm{mg}, 0.076 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$, 3-pyridinyl acetic acid ($40 \mathrm{mg}, 0.23 \mathrm{mmol}$), 1-(3-dimethylamino-propyl)-3-ethylcarbodiimide hydrochloride ($44 \mathrm{mg}, 0.23 \mathrm{mmol}$), and DMAP $(9 \mathrm{mg}$, 0.076 mmol) were added. After stirring for 72 h under N_{2}, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The evaporation of the organic solvent gave 70 mg of the crude product, which was purified by
chromatography on a column of silica gel (acetone/petroleum ether/triethylamine) to afford 3a ($40 \mathrm{mg}, 68 \%$). ${ }^{13} \mathrm{CNMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.7\left(4-\mathrm{CH}_{3}\right), 10.0\left(14-\mathrm{CH}_{3}\right), 12.7$ $\left(10-\mathrm{CH}_{3}\right), 13.0\left(12-\mathrm{CH}_{3}\right), 15.1\left(2-\mathrm{CH}_{3}\right)$, $18.2\left(8-\mathrm{CH}_{3}\right), 19.4\left(6-\mathrm{CH}_{3}\right), 20.8$ ($\left.2^{\prime}-\mathrm{OAc}\right)$, $21.4\left(5^{\prime}-\mathrm{CH}_{3}\right), 21.9$ (14-C), 30.2 (4'-C), 36.2 (4-C), 37.4 (10-C), 38.3 (7-C), 40.5 (3^{\prime} $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.6\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 43.1(2-\mathrm{C})$, $44.8(8-\mathrm{C}), 49.8\left(6-\mathrm{OCH}_{3}\right), 63.2$ ($\left.3^{\prime}-\mathrm{C}\right), 69.1$ ($\left.5^{\prime}-\mathrm{C}\right), 71.1$ ($\left.2^{\prime}-\mathrm{C}\right), 75.7$ (13-C), 78.1 (3-C), 78.5 (11-C), 79.8 (12-C), 80.7 (5-C), 84.6 (6-C), 100.5 ($\left.1^{\prime}-\mathrm{C}\right), 123.5$ (3-Py-C), 129.1 (3-Py-C), 136.9 (3-Py-C), 149.0 (3-Py-C), 150.3 (3-Py-C), 153.9 ($11-\mathrm{O}-\mathrm{CO}-\mathrm{O}$), 169.7 ($\left.2^{\prime}-\mathrm{OAc}\right), 169.9\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right)$, 173.7 (1-C), 212.1 (9-C); MS (ESI): m / z $776.9[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{40} \mathrm{H}_{61} \mathrm{~N}_{2} \mathrm{O}_{13}\right)$.
4.2.3 2'-O-Acetyl-3-O-descladinosyl-3-
O-(3,4-methylenedioxy)phenylacetyl-6-Omethylerythromycin A 11,12-cyclic carbonate ($\mathbf{3 b}$)
To a solution of $2(300 \mathrm{mg}, 0.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 ml), 3,4-(methylenedioxy)phenylacetic acid ($247 \mathrm{mg}, 1.37 \mathrm{mmol}$), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($263 \mathrm{mg}, 1.37 \mathrm{mmol}$), and DMAP ($56 \mathrm{mg}, 0.46 \mathrm{mmol}$) were added. After stirring for 36 h under N_{2}, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The evaporation of the organic solvent gave 500 mg of the crude product, which was purified by chromatography on a column of silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{Et}_{3}\right.$ $\mathrm{N})$ to afford $\mathbf{3 b}(242 \mathrm{mg}, 65 \%)$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.7\left(4-\mathrm{CH}_{3}\right), 10.0(14-$ $\left.\mathrm{CH}_{3}\right), 12.7\left(10-\mathrm{CH}_{3}\right), 13.0\left(12-\mathrm{CH}_{3}\right), 15.1$ $\left(2-\mathrm{CH}_{3}\right), 18.2\left(8-\mathrm{CH}_{3}\right), 19.4\left(6-\mathrm{CH}_{3}\right), 20.8$ (2'-OAc), $21.3\left(5^{\prime}-\mathrm{CH}_{3}\right), 21.9\left(14-\mathrm{CH}_{3}\right)$, 30.3 (4^{\prime}-C), 36.2 ($4-\mathrm{C}$), 37.4 (10-C), 38.3 (7-C), $40.5 \quad\left(3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 41.0 \quad$ (3-$\mathrm{OCO}-\mathrm{CH}_{2}$), 43.1 (2-C), 44.8 (8-C), 49.8 $\left(6-\mathrm{OCH}_{3}\right), 63.1$ ($\left.3^{\prime}-\mathrm{C}\right), 68.8\left(5^{\prime}-\mathrm{C}\right), 71.2$ (2'-C), 75.5 (13-C), 77.9 (6-C), 78.1 (3-C), 79.6 (11-C), 80.7 (5-C), 84.6 (12-C), 100.4 $\left(1^{\prime}-\mathrm{C}\right), 101.1\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 108.2(\mathrm{Ph}-\mathrm{C})$,
109.9 (Ph-C), 122.5 (Ph-C), 126.8 (Ph-C), 146.9 (Ph-C), 147.9 (Ph-C), 153.9 (11-$\mathrm{O}-\mathrm{CO}-\mathrm{O}$), 169.7 ($2^{\prime}-\mathrm{OAc}$), 170.7 (3-$\left.\mathrm{OCO}-\mathrm{CH}_{2}\right), 173.8(1-\mathrm{C}), 212.1$ (9-C); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.87(\mathrm{~s}, 1 \mathrm{H})$, 6.76 (s, 2H), $5.95(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{dd}$, $J=2.1, \quad 11.1 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 5.03 \quad(\mathrm{~d}$, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{dd}$, $J=7.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H})$, 2.97 (s, 3H, 6-OCH $), 2.23$ (s, 6H, 3'$\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.07$ (s, 3H, 2'-OAc); HR-ESIMS: $m / z 820.4098[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{42} \mathrm{H}_{62} \mathrm{NO}_{15}, 820.4113$).

4.2.4 2'-O-Acetyl-3-O-(4-
 chlorophenyl)acetyl-3-O-descladinosyl-6-O-methylerythromycin A 11,12-cyclic carbonate (3c)

To a solution of $\mathbf{2}(100 \mathrm{mg}, 0.152 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.5 ml), 4-chlorophenylacetic acid ($104 \mathrm{mg}, 0.61 \mathrm{mmol}$), 1-(3-dimethyla-minopropyl)-3-ethylcarbodiimide hydrochloride ($116 \mathrm{mg}, 0.61 \mathrm{mmol}$), and DMAP $(18 \mathrm{mg}, 0.152 \mathrm{mmol})$ were added. After stirring for 36 h under N_{2}, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The evaporation of the organic solvent gave 150 mg of the crude product, which was purified by chromatography on a column of silica gel (acetone/petroleum ether/triethylamine) to afford $\mathbf{3 c}(75 \mathrm{mg}, 61 \%) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.7\left(4-\mathrm{CH}_{3}\right)$, $10.0\left(14-\mathrm{CH}_{3}\right), 12.7\left(10-\mathrm{CH}_{3}\right), 13.0$ (12$\left.\mathrm{CH}_{3}\right), 15.1\left(2-\mathrm{CH}_{3}\right), 18.2\left(8-\mathrm{CH}_{3}\right), 19.4(6-$ $\left.\mathrm{CH}_{3}\right), 20.7\left(2^{\prime}-\mathrm{OAc}\right), 21.5\left(5^{\prime}-\mathrm{CH}_{3}\right), 21.9$ (14-C), 30.2 ($\left.4^{\prime}-\mathrm{C}\right), 36.2$ (4-C), 37.4 (10C), 38.3 (7-C), $40.6\left(3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.6$ (3-$\mathrm{OCO}-\mathrm{CH}_{2}$), 43.1 (2-C), 44.8 (8-C), 49.9 $\left(6-\mathrm{OCH}_{3}\right), 63.2\left(3^{\prime}-\mathrm{C}\right), 68.7\left(5^{\prime}-\mathrm{C}\right), 75.6$ (2'-C), 76.5 (13-C), 78.0 (3-C), 78.2 (11C), 79.6 (12-C), 80.6 ($5-\mathrm{C}), 84.6$ ($6-\mathrm{C}$), 100.3 (1'-C), 128.8 (3-Ph-C, 2C), 130.8 (3-Ph-C, 2C), 131.7 (3-Ph-C), 133.4 (3-Ph-C), 153.9 ($11-\mathrm{O}-\mathrm{CO}-\mathrm{O}$), 169.8 ($2^{\prime}-\mathrm{OAc}$), 170.3 (3-OCO- CH_{2}), 173.7 (1-C), 212.1
(9-C); MS (ESI): $m / z 810.6[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{ClNO}_{13}\right)$.

4.2.5 2'-O-Acetyl-11-deoxy-10,11-didehydro-3-O-descladinosyl-3-O-(3-pyridyl)acetyl-6-O-methylerythromycin A (4a)

To a solution of $\mathbf{3 a}(170 \mathrm{mg}, 0.21 \mathrm{mmol})$ in 2 ml of acetone, 1,8 -diazabicyclo[5.4.0]un-dec-7-ene ($320 \mu \mathrm{~g}, 2.1 \mathrm{mmol}$) was added. After stirring for 5 h under N_{2}, to the reaction mixture, $\mathrm{KH}_{2} \mathrm{PO}_{4}$ solution and AcOEt were added. The mixture was extracted three times with AcOEt and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The evaporation of the organic solvent gave 120 mg of the crude product. After purification on a column of silica gel, a white foam (4a) was obtained ($110 \mathrm{mg}, 72 \%$). ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 10.1\left(4-\mathrm{CH}_{3}\right), 10.6\left(14-\mathrm{CH}_{3}\right)$, $12.6\left(10-\mathrm{CH}_{3}\right), 13.4\left(12-\mathrm{CH}_{3}\right), 19.7$ (2$\left.\mathrm{CH}_{3}\right), 20.3\left(8-\mathrm{CH}_{3}\right), 20.9\left(6-\mathrm{CH}_{3}\right), 21.3$ (2'-OAc), $22.1\left(5^{\prime}-\mathrm{CH}_{3}\right), 23.0(14-\mathrm{C}), 30.4$ ($4^{\prime}-\mathrm{C}$), 38.3 ($4-\mathrm{C}, 7-\mathrm{C}$), 40.5 ($7-\mathrm{C}$), 40.9 $\left(3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 3-\mathrm{OCO}-\mathrm{CH}_{2}, 3 \mathrm{C}\right), 42.3$ (8C), $49.9\left(6-\mathrm{OCH}_{3}\right), 63.2\left(3^{\prime}-\mathrm{C}\right), 69.1$ ($5^{\prime}-$ C), 71.3 ($\left.2^{\prime}-\mathrm{C}\right), 73.9$ ($12-\mathrm{C}$), 75.7 ($13-\mathrm{C}$), 77.5 (3-C), 79.3 (5-C), 82.6 (6-C), 101.8 ($\left.1^{\prime}-\mathrm{C}\right), 123.4$ (3-Py-C), 129.1 (3-Py-C), 136.9 (3-Py-C), 139.3 (10-C), 139.7 (11-C), 148.7 (3-Py-C), 150.3 (3-Py-C), $169.8\left(2^{\prime}-\mathrm{OAc}\right), 170.3\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right)$, 173.4 (1-C), 206.9 (9-C); MS (ESI): m / z $733.3[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{39} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{11}\right)$.

4.2.6 2'-O-Acetyl-11-deoxy-10,11-didehydro-3-O-descladinosyl-3-O-(3,4-methylenedioxy)phenylacetyl-6-Omethylerythromycin A (4b)

To a solution of $\mathbf{3 b}(240 \mathrm{mg}, 0.29 \mathrm{mmol})$ in 5 ml of acetone,1,8-diazabicyclo[5.4.0]un-dec-7-ene ($440 \mu \mathrm{~g}, 2.93 \mathrm{mmol}$) was added. After stirring for 5 h under N_{2}, to the reaction mixture, $\mathrm{KH}_{2} \mathrm{PO}_{4}$ solution and AcOEt were added. The mixture was extracted three times with AcOEt and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The evaporation of the organic solvent gave

192 mg of the crude product. After purification on a column of silica gel, a white foam (4b) was obtained ($127 \mathrm{mg}, 56 \%$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.9\left(4-\mathrm{CH}_{3}\right), 10.6$ $\left(14-\mathrm{CH}_{3}\right), 13.0\left(10-\mathrm{CH}_{3}\right), 13.5\left(12-\mathrm{CH}_{3}\right)$, $19.4\left(2-\mathrm{CH}_{3}\right), 20.6\left(8-\mathrm{CH}_{3}\right), 20.9\left(6-\mathrm{CH}_{3}\right)$, 21.3 ($\left.2^{\prime}-\mathrm{OAc}\right), 22.0\left(5^{\prime}-\mathrm{CH}_{3}\right), 22.9$ (14-C), 30.5 ($\left.4^{\prime}-\mathrm{C}\right), 40.3$ ($4-\mathrm{C}$), 40.5 (3C, $3^{\prime}-$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 7-\mathrm{C}\right), 40.9\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 41.6$ ($8-\mathrm{C}$), $42.5(2-\mathrm{C}), 50.0\left(6-\mathrm{OCH}_{3}\right), 63.2$ ($3^{\prime}-$ C), 69.0 ($\left.5^{\prime}-\mathrm{C}\right), 71.4$ ($\left.2^{\prime}-\mathrm{C}\right), 73.8$ (12-C), 75.7 (13-C), 77.9 (3-C), 79.1 (5-C), 82.0 (6C), $101.0\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 101.6\left(1^{\prime}-\mathrm{C}\right), 108.1$ (Ph-C), 109.9 (Ph-C), 122.6 (Ph-C), 126.9 (Ph-C), 139.6 (11-C), 139.7 (10-C), 146.8 (Ph-C), 147.7 (Ph-C), 169.7 (2'-OAc), 171.2 (3-OCO- CH_{2}), 173.5 (1-C), 207.0 (9-C); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.80(\mathrm{~s}, 1 \mathrm{H})$, 6.73 (s, 2H), $6.56(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 5.53$ (d, $J=4.5 \mathrm{~Hz}$), 5.07 (dd, $J=2.1,10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.66$ (dd, $J=7.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{OCH}_{3}\right), 2.24$ (s, $\left.6 \mathrm{H}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.05$ (s, 3H, 2'-OAc); MS (ESI): $\quad m / z \quad 776.4 \quad[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{41} \mathrm{H}_{61} \mathrm{NO}_{13}\right)$.

4.2.7 2'-O-Acetyl-11-deoxy-10,11-didehydro-3-O-descladinosyl-3-O-(4-chlorophenyl)acetyl-6-Omethylerythromycin A (4c)

To a solution of $\mathbf{3 c}(81 \mathrm{mg}, 0.1 \mathrm{mmol})$ in 1 ml of acetone, 1,8-diazabicyclo[5.4.0]undec-7ene ($170 \mu \mathrm{~g}, 1.2 \mathrm{mmol}$) was added. After stirring for 3 h under N_{2}, to the reaction mixture, $\mathrm{KH}_{2} \mathrm{PO}_{4}$ solution and AcOEt were added. The mixture was extracted three times with AcOEt and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The evaporation of the organic solvent gave 120 mg of the crude product. After purification on a column of silica gel, a white foam (4c) was obtained ($60 \mathrm{mg}, 78 \%$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.0\left(4-\mathrm{CH}_{3}\right), 10.6$ (14$\left.\mathrm{CH}_{3}\right), 12.7\left(10-\mathrm{CH}_{3}\right), 13.4\left(12-\mathrm{CH}_{3}\right), 19.6$ $\left(2-\mathrm{CH}_{3}\right), 20.3\left(8-\mathrm{CH}_{3}\right), 20.9\left(6-\mathrm{CH}_{3}\right), 21.3$ ($\left.2^{\prime}-\mathrm{OAc}\right), 22.0\left(5^{\prime}-\mathrm{CH}_{3}\right), 23.0(14-\mathrm{C}), 30.4$ (4^{\prime}-C), 40.4 ($4-\mathrm{C}$), 40.5 ($7-\mathrm{C}$), 40.5 ($3^{\prime}-$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 2 \mathrm{C}\right), 40.6\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 41.9$
(2-C), 42.3 ($8-\mathrm{C}), 49.9\left(6-\mathrm{OCH}_{3}\right), 63.2$ (3'C), 69.0 ($\left.5^{\prime}-\mathrm{C}\right), 71.3$ ($\left.2^{\prime}-\mathrm{C}\right), 73.8$ (12-C), 75.6 (13-C), 77.5 (3-C), 79.2 (5-C), 82.4 (6C), 101.7 ($\left.1^{\prime}-\mathrm{C}\right), 128.6$ (3-Ph-C, 2C), 130.8 (3-Ph-C, 2C), 131.8 (3-Ph-C), 133.2 (3-PhC), 139.4 (10-C), 139.6 (11-C), 169.7 (2'$\mathrm{OAc}), 170.7$ (3-OCO- CH_{2}), 173.5 (1-C), 206.9 (9-C); MS (ESI): $m / z 766.3[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{ClNO}_{11}\right)$.

4.2.8 2'-O-Acetyl-11-deoxy-3-O-

 descladinosyl-10,11-didehydro-3-O-(3-pyridyl)acetyl-6-O-methyl-12-(1H-imidazole-1-carboxylate)erythromycin A (5a)A solution of sodium hydride $(5.2 \mathrm{mg}$, 0.13 mmol) in 0.5 ml DMF was stirred for 10 min at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere. The mixture was added dropwise to a solution of compound $\mathbf{4 a}(50 \mathrm{mg}$, 0.068 mmol) in 0.5 ml DMF. After stirring for 30 min , a solution of CDI $(33 \mathrm{mg}$, 0.2 mmol) in 0.5 ml DMF was added dropwise in a flask. The reaction mixture was stirred for 1 h at $-20^{\circ} \mathrm{C}$. Then, the reaction mixture was extracted with 5% $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The crude product was purified by chromatography on a column of silica gel eluted with 1:1:0.5\% acetone/petroleum ether/ triethylamine. Thirty-five milligrams (62%) of compound 5a were obtained as a white foam. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.9$ (4$\left.\mathrm{CH}_{3}\right), 10.2\left(14-\mathrm{CH}_{3}\right), 13.5\left(10-\mathrm{CH}_{3}\right), 15.0$ $\left(12-\mathrm{CH}_{3}\right), 18.5\left(2-\mathrm{CH}_{3}\right), 19.8\left(8-\mathrm{CH}_{3}\right), 20.7$ ($6-\mathrm{CH}_{3}$), $21.5\left(2^{\prime}-\mathrm{OAc}\right), 22.4\left(5^{\prime}-\mathrm{CH}_{3}, 14-\mathrm{C}\right.$, 2C), 30.4 (4'-C), 37.4 (4-C), 38.5 (7-C, 2-C, 2C), $39.2\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 40.4 \quad\left(3^{\prime}-\right.$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 42.9(8-\mathrm{C}), 50.5\left(6-\mathrm{OCH}_{3}\right), 63.2$ ($\left.3^{\prime}-\mathrm{C}\right), 68.8$ ($\left.5^{\prime}-\mathrm{C}\right), 70.5$ ($\left.2^{\prime}-\mathrm{C}\right), 75.8$ (12-C), 78.0 (13-C), 78.3 (3-C), 79.0 (5-C), 84.3 (6C), 100.7 ($1^{\prime}-\mathrm{C}$), 117.0 (12-imidazole-C), 123.6 (3-Py-C), 129.3 (3-Py-C), 130.8 (12-imidazole-C), 136.9 (12-imidazole-C), 137.0 (3-Py-C), 137.6 (10-C), 139.3 (11-C), 145.8 ($12-\mathrm{OCO}-\mathrm{N}$), 149.0 (3-Py-C), 150.2
(3-Py-C), 169.8 (2'-OAc), 170.1 (3-OCO), 172.7 (1-C), 204.5 (9-C); MS (ESI): m/z $827.5[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{43} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{12}\right)$.

4.2.9 2'-O-Acetyl-11-deoxy-3-O-

descladinosyl-10,11-didehydro-3-O-(3,4-methylenedioxy)phenylacetyl-6-O-methyl-12-(1H-imidazole-1-carboxylate) erythromycin A (5b)
A solution of sodium hydride (34 mg , 1.34 mmol) in 1.5 ml DMF was stirred for 10 min at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere. The mixture was added dropwise to a solution of compound 4b $(550 \mathrm{mg}$, 0.67 mmol) in 5 ml DMF. After stirring for 30 min , a solution of CDI $(345 \mathrm{mg}$, 2.0 mmol) in 3 ml DMF was added dropwise in a flask. The reaction mixture was stirred for 1 h at $-20^{\circ} \mathrm{C}$. Then, the reaction mixture was extracted with $5 \% \mathrm{KH}_{2} \mathrm{PO}_{4}$ and EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The product was purified by chromatography on a column of silica gel eluted with 60:1:0.5\% DCM/MeOH/triethylamine to afford compound 5b (214 mg , $55 \%)$ as a white foam. ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.9\left(4-\mathrm{CH}_{3}\right), 10.2\left(14-\mathrm{CH}_{3}\right), 13.5$ $\left(10-\mathrm{CH}_{3}\right), 15.0\left(12-\mathrm{CH}_{3}\right), 18.4\left(2-\mathrm{CH}_{3}\right)$, $19.8\left(8-\mathrm{CH}_{3}\right), 20.8\left(6-\mathrm{CH}_{3}\right), 21.0\left(2^{\prime}-\mathrm{OAc}\right)$, 21.3 (5' $5^{\prime} \mathrm{CH}_{3}$), 22.4 (14-C), 30.3 (4'-C), 37.4 (4-C), 38.4 (7-C), $40.5\left(3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.6$ $\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 41.1$ (2-C), 42.9 (8-C), $50.6\left(6-\mathrm{OCH}_{3}\right), 63.2\left(3^{\prime}-\mathrm{C}\right), 68.8\left(5^{\prime}-\mathrm{C}\right), 71.2$ (2'-C), 75.6 (12-C), 77.5 (13-C), 78.3 (3-C), 79.0 (5-C), 84.3 (6-C), 100.9 (1'-C), 101.1 $\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 108.2$ (Ph-C), 109.9 (Ph-C), 117.0 (imidazole-C), 122.5 (Ph-C), 127.0 (Ph-C), 130.5 (imidazole-C), 136.9 (imida-zole-C), 137.2 (11-C), 139.3 (10-C), 145.8 (12-OCO-N), 146.9 (Ph-C), 147.9 (Ph-C), 169.7 ($\left.2^{\prime}-\mathrm{OAc}\right), 171.0\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right)$, 172.8 (1-C), 204.5 (9-C); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06$ (s, imidazole-H, $1 \mathrm{H}), 7.35$ (s, imidazole-H, 1H), 7.06 (s, imidazole-H, 1H), $6.86(\mathrm{~s}, \mathrm{ph}-\mathrm{H}, 1 \mathrm{H}), 6.76$ (s, ph-H, 2H), $6.65(\mathrm{~s}, 11-\mathrm{H}, 1 \mathrm{H}), 5.95(\mathrm{~s}$, $\left.\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, 2 \mathrm{H}\right), 5.86(\mathrm{dd}, J=2.7,9.9 \mathrm{~Hz}$,
$13-\mathrm{H}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63$ (dd, $\left.J=7.5,10.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}, 1 \mathrm{H}\right), 3.14(\mathrm{~s}, 6-$ $\left.\mathrm{OCH}_{3}, 3 \mathrm{H}\right), 2.23\left(\mathrm{~s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}\right), 2.04$ (s, 2'-OAc, 3H); MS (ESI): m/z 870.5 $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{45} \mathrm{H}_{63} \mathrm{~N}_{3} \mathrm{O}_{14}\right)$.

4.2.10 2'-O-Acetyl-3-O-(4-

chlorophenyl)acetyl-11-deoxy-3-O-
descladinosyl-10,11-didehydro-6-O-methyl-12-(1H-imidazole-1carboxylate) erythromycin A (5c)
A solution of sodium hydride $(3.8 \mathrm{mg}$, 0.095 mmol) in 0.5 ml DMF was stirred for 10 min at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere. The mixture was added dropwise to a solution of compound $\mathbf{4 c}(40 \mathrm{mg}$, 0.05 mmol) in 0.5 ml DMF. After stirring for 30 min , a solution of CDI (24 mg , 0.15 mmol) in 0.5 ml DMF was added dropwise in a flask. The reaction mixture was stirred for 1 h at $-20^{\circ} \mathrm{C}$. Then, the reaction mixture was extracted with 5% $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The product was purified by chromatography on a column of silica gel eluted with 1:1:0.5\% acetone/petroleum ether/triethylamine to afford compound $\mathbf{5 c}(30 \mathrm{mg}, 63 \%)$ as a white foam. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.9\left(4-\mathrm{CH}_{3}\right), 10.2\left(14-\mathrm{CH}_{3}\right), 13.5\left(10-\mathrm{CH}_{3}\right)$, $15.0\left(2-\mathrm{CH}_{3}\right), 19.8\left(12-\mathrm{CH}_{3}\right), 20.8\left(8-\mathrm{CH}_{3}\right)$, $21.3\left(6-\mathrm{CH}_{3}\right), 21.8\left(2^{\prime}-\mathrm{OAc}\right), 22.4\left(5^{\prime}-\mathrm{CH}_{3}\right)$, 22.6 (14-C), 30.2 (4'-C), 37.4 (4-C), 38.5 (7C), $39.3\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 40.5 \quad\left(3^{\prime}-\right.$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 41.7$ (2-C), 42.9 (8-C), 50.5 (6OCH_{3}), 63.3 (3'-C), $68.8\left(5^{\prime}-\mathrm{C}\right), 71.1\left(2^{\prime}-\mathrm{C}\right)$, 75.7 (12-C), 77.2 (13-C), 77.7 (3-C), 78.2 (5-C), 84.3 ($6-\mathrm{C}), 100.9$ ($\left.1^{\prime}-\mathrm{C}\right), 117.0$ (12-imidazole-C), 128.6 (10-C), 128.8 (3-Ph-C, 2C), 130.7 (12-imidazole-C), 130.8 (3-PhC, 2C), 131.9 (3-Ph-C), 133.3 (3-Ph-C), 136.9 (12-imidazole-C), 137.6 (11-C), 145.8 ($12-\mathrm{OCO}-\mathrm{N}$), 169.7 ($\left.2^{\prime}-\mathrm{OAc}\right)$, $170.5\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 172.8$ (1-C), 204.5 (9-C); MS (ESI): $m / z 860.4[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{44} \mathrm{H}_{62} \mathrm{ClN}_{3} \mathrm{O}_{12}\right)$.
4.2.11 2'-O-Acetyl-3-O-(4-chlorophenyl)acetyl-3-O-descladinosyl-11,12-dideoxy-6-O-methyl-12,11-(oxycarbonyl((4-phenylbutyl)imino)) erythromycin A ($\mathbf{6 a}$)
To a solution of $\mathbf{5 c}(50 \mathrm{mg}, 0.058 \mathrm{mmol})$ in $1 \mathrm{ml} \mathrm{CH} 3 \mathrm{CN}_{2} \mathrm{H}_{2} \mathrm{O}$ (10:1), 4-phenylbutylamine ($34.6 \mathrm{mg}, 0.232 \mathrm{mmol}$) was added dropwise. After stirring for 5 h at $50^{\circ} \mathrm{C}$, the aqueous solution was extracted with 5% $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The product was purified by chromatography on a column of silica gel eluted with 1:3:0.5\% acetone/petroleum ether/triethylamine to afford compound $\mathbf{6 a}(30 \mathrm{mg}, 55 \%)$ as a white foam. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ $8.6\left(4-\mathrm{CH}_{3}\right), 10.1\left(14-\mathrm{CH}_{3}\right), 14.2\left(10-\mathrm{CH}_{3}\right)$, $14.3\left(2-\mathrm{CH}_{3}\right), 15.1\left(12-\mathrm{CH}_{3}\right), 18.8\left(8-\mathrm{CH}_{3}\right)$, $19.4\left(6-\mathrm{CH}_{3}\right), 20.8\left(2^{\prime}-\mathrm{OAc}\right), 20.4\left(5^{\prime}-\mathrm{CH}_{3}\right)$, 22.0 (14-C), 26.9 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2-}$ $\mathrm{Ph}), 30.3$ (4'-C), $35.5\left(11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2-}\right.$ $\mathrm{CH}_{2} \mathrm{Ph}$), 35.9 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 38.0 (4-C), 38.7 (10-C), 39.3 (C-7), 40.5 (3-$\left.\mathrm{OCO}-\mathrm{CH}_{2}\right), 40.7\left(3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 42.9(2-$ C), 43.3 ($8-\mathrm{C}$), 45.5 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 49.9\left(6-\mathrm{OCH}_{3}\right), 60.2(\mathrm{C}-11), 63.2$ ($\left.3^{\prime}-\mathrm{C}\right), 68.9$ ($\left.5^{\prime}-\mathrm{C}\right), 71.2$ (2'-C), 77.2 (13-C), 78.0 (12-C), 78.3 (3-C), 78.9 (5-C), 82.4 (6C), 100.4 (1'-C), 125.5 (11,12-Ph-C), 128.1 (11,12-Ph-C, 2C), 128.3 (11,12-Ph-C, 2C), 128.7 (3-Ph-C,2C), 128.8 (3-Ph-C), 130.7 (3-Ph-C), 131.7 (3-Ph-C), 133.5 (3-Ph-C), 142.4 (11,12-Ph-C), 157.2 ($12-\mathrm{OCO}-\mathrm{N}$), 169.7 ($\left.2^{\prime}-\mathrm{OAc}\right), 170.4\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right)$, 173.8 (1-C), 215.5 (9-C); MS (ESI): m / z $941.4[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{51} \mathrm{H}_{73} \mathrm{ClN}_{2} \mathrm{O}_{12}\right)$.

4.2.12 2'-O-Acetyl-3-O-(4-

chlorophenyl)acetyl-3-O-descladinosyl-11,12-dideoxy-6-O-methyl-12,11-(oxycarbonyl((4-(3H-imidazoly(4,5-
b)pyridin-3-yl)butyl)imino))erythromycin A (6b)
To a solution of $\mathbf{5 c}(100 \mathrm{mg}, 0.116 \mathrm{mmol})$ in $1.5 \mathrm{ml} \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(10: 1), 4-(3 \mathrm{H}-$ imidazoly(4,5-b)pyridin-3-yl)butylamine
($90 \mathrm{mg}, 0.464 \mathrm{mmol}$) was added. After stirring for 36 h at room temperature, the reaction solution was extracted with 5\% $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The product was purified by chromatography on a column of silica gel eluted with 1:3:0.5\% acetone/petroleum ether/triethylamine to afford compound $\mathbf{6 b}$ ($80 \mathrm{mg}, 77 \%$) as a white foam. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.6\left(4-\mathrm{CH}_{3}\right), 10.2$ (14CH_{3}), $14.2\left(10-\mathrm{CH}_{3}, 2-\mathrm{CH}_{3}, 2 \mathrm{C}\right), 15.0$ (12$\left.\mathrm{CH}_{3}\right), 18.8\left(8-\mathrm{CH}_{3}\right), 19.4\left(6-\mathrm{CH}_{3}\right), 20.7$ (2'-OAc), $21.3\left(5^{\prime}-\mathrm{CH}_{3}\right), 21.9$ (14-C), 24.4 (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 27.4 (11$\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 30.3 (4^{\prime}-C), 36.0 (4-C), 38.0 (10-C), 38.7 (C-7), 40.5 (3-$\left.\mathrm{OCO}-\mathrm{CH}_{2}\right), 40.6\left(3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 42.7 (2C), 42.8 ($8-\mathrm{C}$), $43.3\left(11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ $\left.\mathrm{CH}_{2} \mathrm{Ar}\right)$, $45.5\left(11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, $50.0\left(6-\mathrm{OCH}_{3}\right), 60.1(\mathrm{C}-11), 63.2$ ($\left.3^{\prime}-\mathrm{C}\right)$, 68.9 ($\left.5^{\prime}-\mathrm{C}\right), 71.1$ ($\left.2^{\prime}-\mathrm{C}\right), 77.2$ (13-C), 77.8 (12-C), 78.3 (3-C), 78.8 (5-C), 82.5 (6-C), 100.5 ($\left.1^{\prime}-\mathrm{C}\right), 117.9$ (11,12-Ar-C), 127.7 (11,12-Ar-C), 128.8 (3-Ph-C), 130.7 (3-Ph-C, 2C), 131.7 (3-Ph-C, 2C), 133.4 (3-$\mathrm{Ph}-\mathrm{C}), 135.4$ (11,12-Ar-C), 144.0 (11,12-Ar-C, 2C), 146.9 (11,12-Ar-C), 157.2 (12-$\mathrm{OCO}-\mathrm{N}$), 169.6 ($2^{\prime}-\mathrm{OAc}$), 170.4 (3-$\mathrm{OCO}-\mathrm{CH}_{2}$), 174.0 (1-C), 215.7 ($9-\mathrm{C}$); MS (ESI): $\quad \mathrm{m} / \mathrm{z} \quad 982.4 \quad[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{51} \mathrm{H}_{72} \mathrm{ClN}_{5} \mathrm{O}_{12}\right)$.

4.2.13 2'-O-Acetyl-3-O-(4-

 chlorophenyl)acetyl-3-O-descladinosyl-11,12-dideoxy-6-O-methyl-12,11-(oxycarbonyl((4-phenyl-1H-1imidazoyl)butyl)imino)erythromycin A (6c)To a solution of $\mathbf{5 c}(50 \mathrm{mg}, 0.058 \mathrm{mmol})$ in $0.5 \mathrm{ml} \mathrm{CH} 3 \mathrm{CN}^{2} \mathrm{H}_{2} \mathrm{O}$ (10:1), (4-phenyl$1 \mathrm{H}-1$-imidazoyl)butylamine $\quad(50 \mathrm{mg}$, 0.232 mmol) was added. After stirring for 36 h at room temperature, the reaction solution was extracted with $5 \% \mathrm{KH}_{2} \mathrm{PO}_{4}$ and EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness.

The product was purified by chromatography on a column of silica gel eluted with 1:2:0.5\% acetone/petroleum ether/triethylamine to afford compound $\mathbf{6 c}$ ($40 \mathrm{mg}, 69 \%$) as a white foam. ${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.6\left(4-\mathrm{CH}_{3}\right), 10.2\left(14-\mathrm{CH}_{3}\right)$, $14.2\left(10-\mathrm{CH}_{3}\right), 14.3\left(2-\mathrm{CH}_{3}\right), 15.0$ (12$\left.\mathrm{CH}_{3}\right), 18.8\left(8-\mathrm{CH}_{3}\right), 19.4\left(6-\mathrm{CH}_{3}\right), 20.7$ (2'-OAc), $21.3\left(5^{\prime}-\mathrm{CH}_{3}\right.$), 22.0 (14-C), 24.3 (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 28.7 (11$\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 30.4$ (4^{\prime}-C), 36.1 (4-C), 38.1 (10-C), 38.8 (C-7), 40.5 ($3^{\prime}-$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.7\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 42.7$ (2C), 42.9 ($8-\mathrm{C}$), $45.5\left(11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ $\left.\mathrm{CH}_{2} \mathrm{Ar}\right)$, $46.7\left(11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, $50.0\left(6-\mathrm{OCH}_{3}\right), 60.2(\mathrm{C}-11), 63.3$ ($\left.3^{\prime}-\mathrm{C}\right)$, 68.9 ($\left.5^{\prime}-\mathrm{C}\right), 71.2$ ($\left.2^{\prime}-\mathrm{C}\right), 76.6$ (13-C), 77.9 (12-C), 78.4 (3-C), 78.9 (5-C), 82.6 (6-C), 100.5 (1'-C), 114.7 (11,12-Ar-C), 124.7 (11,12-Ar-C, 2C), 126.4 (11,12-Ar-C), 128.4 (11,12-Ar-C, 2C), 128.8 (3-Ph-C, 2C), 130.7 (3-Ph-C), 131.7 (3-Ph-C), 133.5 (3-Ph-C, 2C), 134.4 (11,12-Ar-C), 137.2 (11,12-Ar-C), 142.2 (11,12-Ar-C), 157.3 ($12-\mathrm{OCO}-\mathrm{N}$), 169.6 ($\left.2^{\prime}-\mathrm{OAc}\right)$, 170.4 (3-OCO-CH2), 174.2 (1-C), 215.7 (9-C); MS (ESI): m/z $1007.5[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{54} \mathrm{H}_{76} \mathrm{ClN}_{4} \mathrm{O}_{12}\right)$.
4.2.14 2'-O-Acetyl-3-O-descladinosyl-11,12-dideoxy-6-O-methyl-12,11-(oxycarbonyl((4-phenylbutyl)imino))-3-O-(3-pyridyl)acetylerythromycin A (6d)
To a solution of $\mathbf{5 a}(50 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $1 \mathrm{ml} \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ (10:1), 4-phenylbutylamine ($36 \mathrm{mg}, 0.24 \mathrm{mmol}$) was added dropwise. After stirring for 5 h at $50^{\circ} \mathrm{C}$, the reaction solution was extracted with $5 \% \mathrm{KH}_{2} \mathrm{PO}_{4}$ and EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The product was purified by chromatography on a column of silica gel eluted with 1:1:0.5\% acetone/petroleum ether/triethylamine to afford compound $\mathbf{6 d}$ $(48 \mathrm{mg}, 87 \%)$ as a white foam. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.7\left(4-\mathrm{CH}_{3}\right), 10.1$ (14$\left.\mathrm{CH}_{3}\right), 14.2\left(10-\mathrm{CH}_{3}\right), 14.3\left(2-\mathrm{CH}_{3}\right), 15.1$
$\left(12-\mathrm{CH}_{3}\right), 18.8\left(8-\mathrm{CH}_{3}\right), 19.5\left(6-\mathrm{CH}_{3}\right)$, 20.6 ($\left.2^{\prime}-\mathrm{OAc}\right), 21.7\left(5^{\prime}-\mathrm{CH}_{3}\right), 22.0$ (14-C), $26.9\left(11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right.$), 29.0 (11$\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 30.4 ($4^{\prime}-\mathrm{C}$), 35.5 (4-C), 35.9 (10-C), 37.9 (C-7), 38.4 (3-$\left.\mathrm{OCO}-\mathrm{CH}_{2}\right), 38.7\left(3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 2 \mathrm{C}\right), 40.2$ (2-C), 42.9 ($8-\mathrm{C}$), 43.3 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2-}$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 45.4 (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2-}$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 49.9\left(6-\mathrm{OCH}_{3}\right), 60.2(\mathrm{C}-11)$, 62.9 (3'-C), 68.4 ($5^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}, 2 \mathrm{C}$), 76.6 (13-C), 78.1 (12-C), 78.4 (3-C), 79.2 (5C), 82.3 (6-C), 100.0 (1'-C), 123.8 (3-PyC), 125.5 ($11,12-\mathrm{Ar}-\mathrm{C}$), 128.1 (11,12-ArC, 2C), 128.3 (11,12-Ar-C, 2C), 129.2 (3-Py-C), 137.2 (3-Py-C), 142.4 (11,12-ArC), 149.2 (3-Py-C), 150.1 (3-Py-C), 157.2 ($12-\mathrm{OCO}-\mathrm{N}$), 170.0 ($2^{\prime}-\mathrm{OAc}$), 170.1 (3-$\mathrm{OCO}-\mathrm{CH}_{2}$), 173.7 (1-C), 215.4 (9-C); MS (ESI): m/z 930.4 $\quad[\mathrm{M}+\mathrm{Na}]^{+}$ $\left(\mathrm{C}_{50} \mathrm{H}_{73} \mathrm{O}_{12} \mathrm{~N}_{3} \mathrm{Na}\right)$.

4.2.15 2'-O-Acetyl-3-O-descladinosyl-11,12-dideoxy-6-O-methyl-12,11-(oxycarbonyl((4-(3H-imidazoly(4,5-b)pyridin-3-yl)butyl)imino))-3-O-(3pyridyl)acetylerythromycin A (6e)

To a solution of $\mathbf{5 a}(150 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $2.5 \mathrm{ml} \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(10: 1), 4-(3 \mathrm{H}-$ imidazoly(4,5-b)pyridin-3-yl)butylamine ($140 \mathrm{mg}, 0.72 \mathrm{mmol}$) was added. After stirring for 36 h at room temperature, the reaction solution was extracted with 5% $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The product was purified by chromatography on a column of silica gel eluted with 1:1:0.5\% acetone/petroleum ether/triethylamine to afford compound $\mathbf{6 e}$ ($80 \mathrm{mg}, 47 \%$) as a white foam. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.7\left(4-\mathrm{CH}_{3}\right), 10.2(14-$ $\left.\mathrm{CH}_{3}\right), 14.2\left(10-\mathrm{CH}_{3}\right), 14.3\left(2-\mathrm{CH}_{3}\right), 15.2$ $\left(12-\mathrm{CH}_{3}\right), 18.8\left(8-\mathrm{CH}_{3}\right), 19.5\left(6-\mathrm{CH}_{3}\right)$, 20.6 ($\left.2^{\prime}-\mathrm{OAc}\right), 21.8\left(5^{\prime}-\mathrm{CH}_{3}\right), 21.9$ (14-C), $24.4\left(11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right.$), 27.4 (11$\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 30.4 ($4^{\prime}-\mathrm{C}$), 35.9 (4-C), 37.8 ($10-\mathrm{C}$), 38.4 (C-7), 38.7 (3-$\left.\mathrm{OCO}-\mathrm{CH}_{2}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 42.6$ (2-C), 42.9
(8-C), 43.3 (11- $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, 45.4 (11-NCH2 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 50.0 (6$\left.\mathrm{OCH}_{3}\right), 60.0(\mathrm{C}-11), 62.8\left(3^{\prime}-\mathrm{C}\right), 68.2\left(5^{\prime}-\right.$ C, 2^{\prime}-C), 76.6 (13-C), 78.1 (12-C), 78.3 (3C), 79.1 (5-C), 82.5 (6-C), 99.8 ($\left.1^{\prime}-\mathrm{C}\right)$, 118.0 (11,12-Ar-C), 123.9 (Py-C), 127.7 (11,12-Ar-C), 129.2 (Py-C), 135.4 (11,12-Ar-C), 137.3 (Py-C), 144.0 (11,12-Ar-C), 146.9 (11,12-Ar-C), 149.4 (Py-C), 150.0 (Py-C), $157.2(12-\mathrm{OCO}-\mathrm{N}), 170.1 \quad\left(2^{\prime}-\right.$ OAc), 170.3 (3-OCO- CH_{2}), 173.9 (1-C), 215.6 (9-C); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.58-8.53$ (m, Py-H, Ar-H, 3H), 8.14 (s, Ar-H, 1H), 7.79-7.72 (m, Ar-H, Py-H, $2 \mathrm{H}), 7.31$ (dd, $J=4.8,8.1 \mathrm{~Hz}, \mathrm{Py}-\mathrm{H}, 1 \mathrm{H})$, 7.19 (dd, $J=4.8,8.1 \mathrm{~Hz}$, Ar-H, 1H), 4.67 (dd, $\left.J=7.5,10.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}, 1 \mathrm{H}\right), 3.89(\mathrm{~d}$, $\left.J=7.5 \mathrm{~Hz}, \quad 1^{\prime}-\mathrm{H}, \quad 1 \mathrm{H}\right), \quad 3.73 \quad(\mathrm{~s}, \quad 3-$ $\left.\mathrm{OCO}-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.93\left(\mathrm{~s}, 6-\mathrm{OCH}_{3}, 3 \mathrm{H}\right)$, $2.26\left(\mathrm{~s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}\right), 2.09\left(\mathrm{~s}, 2^{\prime}-\mathrm{OAc}\right.$, $3 \mathrm{H})$; MS (ESI): $m / z \quad 949.5[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{50} \mathrm{H}_{72} \mathrm{~N}_{6} \mathrm{O}_{12}\right)$.

4.2.16 2'-O-Acetyl-3-O-descladinosyl-11,12-dideoxy-6-O-methyl-12,11-(oxycarbonyl(((4-phenyl-1H-1-imidazoyl)butyl)imino))-3-O-(3pyridyl)acetylerythromycin A ($\mathbf{\sigma f}$)

To a solution of $\mathbf{5 a}(120 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $2 \mathrm{ml} \mathrm{CH} 33 \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ (10:1), (4-phe-nyl-1H-1-imidazoyl)butylamine (156 mg , 0.72 mmol) was added. After stirring for 36 h at room temperature, the reaction solution was extracted with $5 \% \mathrm{KH}_{2} \mathrm{PO}_{4}$ and EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The product was purified by chromatography on a column of silica gel eluted with 1:1:0.5\% acetone/petroleum ether/triethylamine to afford compound $6 \mathbf{f}(56 \mathrm{mg}$, 42%) as a white foam. ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75} \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.8\left(4-\mathrm{CH}_{3}\right), 10.3\left(14-\mathrm{CH}_{3}\right)$, $14.2\left(10-\mathrm{CH}_{3}\right), 14.3\left(2-\mathrm{CH}_{3}\right), 15.2$ (12$\left.\mathrm{CH}_{3}\right), 18.8\left(8-\mathrm{CH}_{3}\right), 19.5\left(6-\mathrm{CH}_{3}\right), 20.5$ ($\left.2^{\prime}-\mathrm{OAc}\right), 21.9\left(5^{\prime}-\mathrm{CH}_{3}, 14-\mathrm{C}, 2 \mathrm{C}\right), 24.2$ (11-NCH2 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 28.5 (11$\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 29.6 (4'-C), 35.9
(4-C), 37.8 ($10-\mathrm{C}$), 38.4 (C-7), 38.7 (3-$\left.\mathrm{OCO}-\mathrm{CH}_{2}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 3 \mathrm{C}\right), 42.6$ (2-C), 42.9 (8-C), 45.4 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2-}$ Ar), $47.0\left(11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, 50.0 $\left(6-\mathrm{OCH}_{3}\right), 60.1(\mathrm{C}-11), 62.7\left(3^{\prime}-\mathrm{C}\right), 67.9$ ($\left.5^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}, 2 \mathrm{C}\right), 76.6$ (13-C), 78.2 (12-C), 78.3 (3-C), 79.1 (5-C), 82.5 (6-C), 99.5 (1^{\prime} C), 114.8 ($11,12-\mathrm{Ar}-\mathrm{C}$), 124.0 (3-Py-C), 124.8 (11,12-Ar-C, 3C), 126.9 (11,12-ArC), 128.4 (11,12-Ar-C, 3C), 129.2 (3-PyC), 136.9 (3-Py-C), 137.2 (11,12-Ar-C), 149.9 (3-Py-C), 151.9 (3-Py-C), 157.3 (12-$\mathrm{OCO}-\mathrm{N}), 170.2$ (2'-OAc), 170.3 (3-$\mathrm{OCO}-\mathrm{CH}_{2}$), 174.1 (1-C), 215.6 (9-C); $\mathrm{MS} \quad(\mathrm{ESI}): \quad m / z \quad 974.8 \quad[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{53} \mathrm{H}_{75} \mathrm{~N}_{5} \mathrm{O}_{12}\right)$.

4.2.17 2'-O-Acetyl-3-O-descladinosyl-11,12-dideoxy-6-O-methyl-12,11-(oxycarbonyl((4-(1H-imidazoly(4,5-b)pyridin-1-yl)butyl)imino))-3-O-(3pyridyl)acetylerythromycin A ($\mathbf{6 g}$)

To a solution of $\mathbf{5 a}(73 \mathrm{mg}, 0.088 \mathrm{mmol})$ in $1.5 \mathrm{ml} \mathrm{CH} 3 \mathrm{CN}_{2} \mathrm{H}_{2} \mathrm{O}(10: 1)$, $4-(3 \mathrm{H}-$ imidazoyl(4,5-b)pyridin-1-yl)butylamine ($67.7 \mathrm{mg}, 0.356 \mathrm{mmol}$) was added. After stirring overnight at $60^{\circ} \mathrm{C}$, the reaction solution was extracted with $5 \% \mathrm{KH}_{2} \mathrm{PO}_{4}$ and EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The product was purified by chromatography on a column of silica gel eluted with 30:1:0.5\% DCM/MeOH/triethylamine to afford compound $\mathbf{6 g}(32 \mathrm{mg}, 38 \%)$ as a white foam. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $8.6\left(4-\mathrm{CH}_{3}\right), 10.2\left(14-\mathrm{CH}_{3}\right), 14.2\left(10-\mathrm{CH}_{3}\right.$, $\left.12-\mathrm{CH}_{3}\right), 15.0\left(2-\mathrm{CH}_{3}\right), 18.8\left(8-\mathrm{CH}_{3}\right), 19.4$ $\left(6-\mathrm{CH}_{3}\right), 20.7\left(2^{\prime}-\mathrm{OAc}\right), 21.4\left(5^{\prime}-\mathrm{CH}_{3}\right)$, 21.9 (14-C), $24.4\left(11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2-}\right.$ Ar), 27.4 (11-NCH $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 30.2 ($4^{\prime}-\mathrm{C}$), 36.0 ($4-\mathrm{C}$), 38.0 ($10-\mathrm{C}$), 38.4 (3-$\mathrm{OCO}-\mathrm{CH}_{2}$), 38.7 (7-C), $40.5 \quad\left(3^{\prime}-\right.$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 42.7\left(11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2-}\right.$ Ar), 42.8 (2-C), 43.3 (8-C), 45.5 (11$\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, $49.9\left(6-\mathrm{OCH}_{3}\right)$, 60.1 (11-C), 63.2 ($\left.3^{\prime}-\mathrm{C}\right), 69.1$ ($\left.5^{\prime}-\mathrm{C}\right), 71.1$ ($\left.2^{\prime}-\mathrm{C}\right), 76.7$ (13-C), 78.2 (6-C), 78.3 (3-C),
78.9 (5-C), 82.5 ($12-\mathrm{C}$), 100.6 ($\left.1^{\prime}-\mathrm{C}\right)$, 118.0 (11,12-Ar-C), 123.5 (Py-C), 127.7 (11,12-Ar-C), 129.0 (Py-C), 135.4 (11,12-Ar-C), 136.9 (Py-C), 144.0 (11,12-Ar-C), 144.0 (11,12-Ar-C), 146.9 (11,12-Ar-C), 148.9 (Py-C), 150.2 (Py-C), 157.2 (12-$\mathrm{OCO}-\mathrm{N}$), 169.7 ($2^{\prime}-\mathrm{OAc}$), 170.0 (3-$\mathrm{OCO}-\mathrm{CH}_{2}$), 173.9 (1-C), 215.7 (9-C); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.57-8.54$ (m, Py-H, 2H), 8.35 (dd, $J=1.2,4.8 \mathrm{~Hz}$, Ar-H, 1H), 8.08 (s, Ar-H, 1H), 8.02 (dd, $J=1.2, \quad 8.1 \mathrm{~Hz}, \quad \operatorname{Ar}-\mathrm{H}, 1 \mathrm{H}), 7.74(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}$, Py-H, 1H), 7.30 (dd, $J=4.8$, $7.2 \mathrm{~Hz}, ~ P y-H, 1 H), 7.19$ (dd, $J=4.8$, $8.1 \mathrm{~Hz}, ~ \mathrm{Ar}-\mathrm{H}, 1 \mathrm{H}$), 4.66 (dd, $J=7.5$, $\left.10.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}, 1 \mathrm{H}\right), 3.87\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1^{\prime}-\right.$ $\mathrm{H}, 1 \mathrm{H}), 3.72\left(\mathrm{~s}, 3-\mathrm{OCO}-\mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.91$ (s, 6-OCH $3,3 \mathrm{H}), 2.24\left(\mathrm{~s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}\right)$, 2.08 (s, 2'-OAc, 3H); HR-ESI-MS: m/z $949.5251 \quad[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{50} \mathrm{H}_{73} \mathrm{~N}_{6} \mathrm{O}_{12}, 949.5286$).
4.2.18 2'-O-Acetyl-3-O-descladinosyl-11,12-dideoxy-6-O-methyl-3-O-(3,4-methylenedioxy)phenylacetyl-12,11-(oxycarbonyl((4-(1H-imidazoly(4,5-b)pyridin-1-yl)butyl)imino))erythromycin A (6h)
To a solution of $\mathbf{5 b}$ ($146 \mathrm{mg}, 0.168 \mathrm{mmol}$) in $4 \mathrm{ml} \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(10: 1)$, 4 -(1H-imida-zoly(4,5-b)pyridin-1-yl)butylamine ($128 \mathrm{mg}, 0.67 \mathrm{mmol}$) was added. After stirring overnight at $60^{\circ} \mathrm{C}$, the aqueous solution was extracted with $5 \% \mathrm{KH}_{2} \mathrm{PO}_{4}$ and EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The product was purified by column chromatography eluted with 60:1:0.5\% $\mathrm{DCM} / \mathrm{MeOH} /$ triethylamine to afford compound $6 \mathbf{h}(57.9 \mathrm{mg}, 35 \%)$ as a white foam. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.6$ (4$\left.\mathrm{CH}_{3}\right), 10.3\left(14-\mathrm{CH}_{3}\right), 14.1\left(10-\mathrm{CH}_{3}\right), 14.2$ $\left(10-\mathrm{CH}_{3}\right), 15.0\left(12-\mathrm{CH}_{3}\right), 18.8\left(8-\mathrm{CH}_{3}\right)$, $19.5\left(6-\mathrm{CH}_{3}\right), 20.8\left(2^{\prime}-\mathrm{OAc}\right), 21.3\left(5^{\prime}-\right.$ CH_{3}), 21.9 (14-C), 24.4 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2}$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, 27.6 (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 30.3$ ($\left.4^{\prime}-\mathrm{C}\right), 36.1$ (4-C), 38.0
(10-C), 38.8 ($7-\mathrm{C}$), $40.5\left(3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $41.1\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 42.4$ (2-C), 42.9 (8C), $45.1\left(11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 45.6$ (11-NCH2 $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, 50.1 (6$\mathrm{OCH}_{3}$), 60.0 (11-C), 63.1 ($\left.3^{\prime}-\mathrm{C}\right), 68.9$ ($5^{\prime}-$ C), 71.2 ($2^{\prime}-\mathrm{C}$), 76.7 ($13-\mathrm{C}$), 77.6 ($6-\mathrm{C}$), 78.5 (3-C), 78.8 (5-C), 82.7 (12-C), 100.5 $\left(1^{\prime}-\mathrm{C}\right), 101.1\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 108.3(\mathrm{Ph}-\mathrm{C})$, 109.8 (Ph-C), $117.9 \times 2(11,12-\mathrm{Ar}-\mathrm{C})$, 122.5 (Ph-C), 126.1 (11,12-Ar-C), 126.7 (Ph-C), 144.8 (11,12-Ar-C), 145.0 (11,12-Ar-C), 147.0 (Ph-C), 147.9 (Ph-C), 156.3 (11,12-Ar-C), 157.4 (12-OCO-N), 169.8 (2'-OAc), $171.0\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 174.4$ (1-C), 215.8 (9-C); HR-ESI-MS: m / z $992.5266 \quad[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{52} \mathrm{H}_{74} \mathrm{~N}_{5} \mathrm{O}_{14}, 992.5232$).
4.2.19 2'-O-Acetyl-3-O-descladinosyl-11,12-dideoxy-6-O-methyl-3-O-(3,4-methylenedioxy)phenylacetyl-12,11-(oxycarbonyl((4-(3H-imidazoly(4,5-b)pyridin-3-yl)butyl)imino))erythromycin A (6i)
To a solution of $\mathbf{5 b}$ ($102 \mathrm{mg}, 0.117 \mathrm{mmol})$ in $3 \mathrm{ml} \quad \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O} \quad(10: 1), 4-(3 \mathrm{H}-$ imidazoyl(4,5-b)pyridin-3-yl)butylamine ($90 \mathrm{mg}, 0.47 \mathrm{mmol}$) was added. After stirring overnight at $60^{\circ} \mathrm{C}$, the aqueous mixture was extracted with $5 \% \mathrm{KH}_{2} \mathrm{PO}_{4}$ and EtOAc. The organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The product was purified by column chromatography eluted with 60:1:0.5\% $\mathrm{DCM} / \mathrm{MeOH} /$ triethylamine to afford compound $\mathbf{6 i}(33.8 \mathrm{mg}, 29 \%)$ as a white foam. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.6$ $\left(4-\mathrm{CH}_{3}\right), 10.2\left(14-\mathrm{CH}_{3}\right), 14.2\left(10-\mathrm{CH}_{3}\right)$, $14.2\left(12-\mathrm{CH}_{3}\right), 15.0\left(2-\mathrm{CH}_{3}\right), 18.8$ (8$\left.\mathrm{CH}_{3}\right), 19.5\left(6-\mathrm{CH}_{3}\right), 20.8\left(2^{\prime}-\mathrm{OAc}\right), 21.3$ $\left(5^{\prime}-\mathrm{CH}_{3}\right), 21.9$ (14-C), 24.4 ($11-\mathrm{NCH}_{2-}$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, 27.4 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2-}$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 30.3 ($4^{\prime}-\mathrm{C}$), 36.0 ($4-\mathrm{C}$), 38.0 (10-C), 38.7 (7-C), 40.5 ($3^{\prime}-$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 41.1\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 42.7$ (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 42.9 (2-C), 43.3 ($8-\mathrm{C}$), 45.5 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$
$\mathrm{Ar}), 50.0\left(6-\mathrm{OCH}_{3}\right), 60.1$ (11-C), 63.1 (3'C), 68.9 ($\left.5^{\prime}-\mathrm{C}\right), 71.2$ ($\left.2^{\prime}-\mathrm{C}\right), 76.6$ ($13-\mathrm{C}$), 77.6 (6-C), 78.3 (3-C), 78.9 (5-C), 82.6 (12-C), 100.5 ($\left.1^{\prime}-\mathrm{C}\right), 101.1\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right)$, 108.2 (Ph-C), 109.8 (Ph-C), 118.0 (11,12-Ar-C), 122.5 (Ph-C), 126.7 (Ph-C), 127.7 (11,12-Ar-C), 135.4 (11,12-Ar-C), 144.0 (11,12-Ar-C), 144.1 (11,12-Ar-C), 146.9 (Ph-C), 146.9 ($11,12-\mathrm{Ar}-\mathrm{C}), 147.9$ (PhC), 157.3 ($12-\mathrm{OCO}-\mathrm{N}$), 169.8 ($2^{\prime}-\mathrm{OAc}$), $170.9\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 174.1$ (1-C), 215.7 (9-C); HR-ESI-MS: m/z 992.5234 $[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{52} \mathrm{H}_{74} \mathrm{~N}_{5} \mathrm{O}_{14}$, 992.5232).
4.2.20 3-O-(4-Chlorophenyl)acetyl-3-O-descladinosyl-11,12-dideoxy-6-O-methyl-12,11-(oxycarbonyl((4-phenylbutyl) imino))erythromycin A (7a)
A solution of compound $\mathbf{6 a}(137 \mathrm{mg}$, 0.148 mmol) in 3 ml MeOH was refluxed for 3 h . After evaporation of the solvent, the residue was purified by column chromatography eluted with 60:1:0.5\% $\mathrm{DCM} / \mathrm{MeOH} /$ triethylamine to afford compound $7 \mathbf{a}(100 \mathrm{mg}, 76 \%)$ as a white foam. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.8$ (4$\left.\mathrm{CH}_{3}\right), 10.1\left(14-\mathrm{CH}_{3}\right), 14.2\left(10-\mathrm{CH}_{3}\right), 14.3$ $\left(2-\mathrm{CH}_{3}\right), 14.9\left(12-\mathrm{CH}_{3}\right), 18.8\left(8-\mathrm{CH}_{3}\right)$, $19.5\left(6-\mathrm{CH}_{3}\right), 21.0\left(5^{\prime}-\mathrm{CH}_{3}\right), 22.0$ (14-C), 26.9 (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 29.0 ($4^{\prime}-$ C), 35.5 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 36.2 (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 38.4 (4-C), 38.8 ($10-\mathrm{C}$), 40.2 (C-7), 40.6 (3-$\left.\mathrm{OCO}-\mathrm{CH}_{2}\right), 40.2\left(3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 42.9(2-$ C), 43.3 ($8-\mathrm{C}$), $45.5\left(11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2-}\right.$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 50.0\left(6-\mathrm{OCH}_{3}\right), 60.2(\mathrm{C}-11), 65.9$ ($\left.3^{\prime}-\mathrm{C}\right), 69.3$ ($5^{\prime}-\mathrm{C}$), 70.3 ($2^{\prime}-\mathrm{C}$), 76.6 ($13-$ C), 78.2 (3-C), 78.2 (12-C), 80.6 (5-C), 82.5 (6-C), 103.4 (1'-C), 125.5 (11,12-PhC, 2C), 128.1 ($11,12-\mathrm{Ph}-\mathrm{C}, 2 \mathrm{C}), 128.4$ (11,12-Ph-C, 2C), 128.7 (3-Ph-C, 2C), 130.8 (3-Ph-C), 131.9 (3-Ph-C), 133.3 (3-Ph-C), 142.5 ($11,12-\mathrm{Ph}-\mathrm{C}$), 157.3 (12-$\mathrm{OCO}-\mathrm{N}), 170.8\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 173.9$ (1-C), 215.6 (9-C); HR-ESI-MS: m / z $899.4794 \quad[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\left.\mathrm{C}_{49} \mathrm{H}_{72} \mathrm{ClN}_{2} \mathrm{O}_{11}, 899.4819\right)$.
4.2.21 3-O-(4-Chlorophenyl)acetyl-3-O-descladinosyl-11,12-dideoxy-6-O-methyl-12,11-(oxycarbonyl((4-(3H-imidazoly (4,5-b)pyridin-3-yl)butyl)imino)) erythromycin A (7b)
The title compound 7b was prepared from $\mathbf{6 b}(60 \mathrm{mg}, 0.061 \mathrm{mmol})$ following the procedure used to prepare $7 \mathbf{a}$ (70% yield). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.8\left(4-\mathrm{CH}_{3}\right), 10.2\left(14-\mathrm{CH}_{3}\right), 14.1$ (10$\left.\mathrm{CH}_{3}\right), 14.2\left(2-\mathrm{CH}_{3}\right), 14.9\left(12-\mathrm{CH}_{3}\right), 18.8$ $\left(8-\mathrm{CH}_{3}\right), 19.5\left(6-\mathrm{CH}_{3}\right), 21.0\left(5^{\prime}-\mathrm{CH}_{3}\right)$, 21.9 (14-C), 24.4 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2-}$ $\left.\mathrm{CH}_{2} \mathrm{Ar}\right)$, 27.4 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 28.2 (4'-C), 36.2 (4-C), 38.4 (10-C), 38.7 (C-7), 40.2 (3-OCO-CH2), 40.6 ($3^{\prime}-$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 42.7$ (2-C), 42.9 (8-C), 43.3 (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 45.5 (11$\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, $50.0\left(6-\mathrm{OCH}_{3}\right)$, 60.1 (C-11), 66.0 ($\left.3^{\prime}-\mathrm{C}\right), 69.3$ ($\left.5^{\prime}-\mathrm{C}\right)$, 70.3 ($\left.2^{\prime}-\mathrm{C}\right), 76.6$ (13-C), 78.0 (12-C), 78.3 (3-C), 80.5 (5-C), 82.6 (6-C), 103.4 ($\left.1^{\prime}-\mathrm{C}\right), \quad 118.0 \quad$ (11,12-Ar-C), $\quad 127.7$ (11,12-Ar-C), 128.7 (3-Ph-C), 130.7 (3-Ph-C), 131.9 (3-Ph-C,2C), 133.3 (3-PhC, 2C), 135.4 (11,12-Ar-C), 144.0 (11,12-Ar-C), 144.1 (11,12-Ar-C), 146.9 (11,12-Ar-C), 157.3 (12-OCO-N), 170.7 (3-OCO- CH_{2}), 174.2 (1-C), 215.7 (9C); MS (ESI): m/z 940.5 $\quad[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{49} \mathrm{H}_{70} \mathrm{ClN}_{5} \mathrm{O}_{11}\right)$.

4.2.22 3-O-Descladinosyl-3-O-(4-

chlorophenyl)acetyl-6-O-methyl-11,12-dideoxy-12,11-(oxycarbonyl(()4-phenyl-1H-1-imidazoyl)butyl)imino)) erythromycin A (7c)
The title compound 7c was prepared from $6 \mathbf{c}(120 \mathrm{mg}, 0.12 \mathrm{mmol})$ following the procedure used to prepare $7 \mathbf{a}$ (70% yield). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.8\left(4-\mathrm{CH}_{3}\right), 10.2\left(14-\mathrm{CH}_{3}\right), 14.2$ (10$\left.\mathrm{CH}_{3}\right), 14.2\left(2-\mathrm{CH}_{3}\right), 14.9\left(12-\mathrm{CH}_{3}\right), 18.8$ $\left(8-\mathrm{CH}_{3}\right), 19.5\left(6-\mathrm{CH}_{3}\right), 21.0\left(5^{\prime}-\mathrm{CH}_{3}\right)$, 21.9 (14-C), $24.2 \quad\left(11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ $\left.\mathrm{CH}_{2} \mathrm{Ar}\right)$, 28.1 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 28.6 ($\left.4^{\prime}-\mathrm{C}\right), 36.2$ ($4-\mathrm{C}$), 38.4 ($10-\mathrm{C}$), 38.7 (C-7), $40.2\left(3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.6$
(3-OCO-CH2), 42.7 (2-C), 42.9 (8-C), 45.5 (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 46.7 (11-NCH2 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 50.1 (6OCH_{3}), 60.1 (C-11), 65.9 ($\left.3^{\prime}-\mathrm{C}\right), 69.4$ ($\left.5^{\prime}-\mathrm{C}\right), 70.2$ ($2^{\prime}-\mathrm{C}$), 76.6 ($13-\mathrm{C}$), 77.9 (12-C), 78.3 (3-C), 80.4 (5-C), 82.6 (6C), 103.4 ($\left.1^{\prime}-\mathrm{C}\right), 114.7$ (11,12-Ar-C), 124.6 (11,12-Ar-C, 2C), 126.4 (11,12-Ar-C), 128.4 (11,12-Ar-C, 2C), 128.7 (3-Ph-C, 2C), 130.7 (3-Ph-C), 131.8 (3-PhC), 133.3 (3-Ph-C, 2C), 134.2 (11,12-ArC), 137.2 (11,12-Ar-C), 142.0 (11,12-ArC), 157.3 ($12-\mathrm{OCO}-\mathrm{N}$), 170.7 (3-$\mathrm{OCO}-\mathrm{CH}_{2}$), 174.3 (1-C) 215.8 (9-C); MS (ESI): $\quad m / z \quad 965.5 \quad[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{52} \mathrm{H}_{73} \mathrm{ClN}_{4} \mathrm{O}_{11}\right)$.
4.2.23 3-O-Descladinosyl-11,12-dideoxy-6-O-methyl-12,11-
(oxycarbonyl((4-phenylbutyl)imino))-3-O-(3-pyridyl)acetylerythromycin A (7d)
The title compound 7d was prepared from $\mathbf{6 d}(130 \mathrm{mg}, 0.15 \mathrm{mmol})$ following the procedure used to prepare 7a (94\% yield). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $9.0\left(4-\mathrm{CH}_{3}\right), 10.1\left(14-\mathrm{CH}_{3}\right), 14.2$ (10$\left.\mathrm{CH}_{3}\right), 14.3\left(2-\mathrm{CH}_{3}\right), 15.1\left(12-\mathrm{CH}_{3}\right), 18.8$ $\left(8-\mathrm{CH}_{3}\right), 19.5 \quad\left(6-\mathrm{CH}_{3}\right), 20.0\left(5^{\prime}-\mathrm{CH}_{3}\right)$, 22.0 (14-C), 26.9 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$, 29.0 (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 30.5 ($4^{\prime}-\mathrm{C}$), 35.5 ($4-\mathrm{C}$), 36.2 (10-C), 38.1 (C-7), $38.2\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 38.8 \quad\left(3^{\prime}-\right.$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 40.3$ (2-C), 42.9 (8-C), 43.3 (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 45.4 (11$\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, $49.9\left(6-\mathrm{OCH}_{3}\right)$, 60.3 (C-11), 66.5 ($3^{\prime}-\mathrm{C}$), 67.8 ($5^{\prime}-\mathrm{C}$), 69.4 ($\left.2^{\prime}-\mathrm{C}\right), 76.6$ (13-C), 78.1 (12-C), 78.6 (3-C), 81.3 (5-C), 82.4 (6-C), 102.4 (1'-C), 123.6 (3-Py-C), 125.5 (11,12-ArC), 128.1 ($11,12-\mathrm{Ar}-\mathrm{C}, ~ 2 \mathrm{C}), 128.3$ (11,12-Ar-C, 2C), 129.7 (3-Py-C), 137.5 (3-Py-C), 142.4 (11,12-Ar-C), 148.6 (3-Py-C), 150.4 (3-Py-C), 157.2 $(12-\mathrm{OCO}-\mathrm{N}), 170.7\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right)$, 173.9 (1-C), 215.5 (9-C); HR-ESI-MS: $\mathrm{m} / \mathrm{z} \quad 866.5141 \quad[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{48} \mathrm{H}_{72} \mathrm{~N}_{3} \mathrm{O}_{11}, 866.5161$).
4.2.24 3-O-Descladinosyl-11,12-dideoxy-3-O-(3-pyridyl)acetyl-6-O-methyl-12,11-(oxycarbonyl(14-(3H-imidazoly(4,5-b)pyridin-3-yl)butyl)imino)) erythromycin A (7e)
The title compound $\mathbf{7 e}$ was prepared from 6e $(80 \mathrm{mg}, 0.084 \mathrm{mmol})$ following the procedure used to prepare 7a (91% yield). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.9\left(4-\mathrm{CH}_{3}\right), 10.2\left(14-\mathrm{CH}_{3}\right), 14.2$ (10$\left.\mathrm{CH}_{3}\right), 14.2\left(2-\mathrm{CH}_{3}\right), 15.1\left(12-\mathrm{CH}_{3}\right), 18.8$ $\left(8-\mathrm{CH}_{3}\right), 19.5\left(6-\mathrm{CH}_{3}\right), 20.7\left(5^{\prime}-\mathrm{CH}_{3}\right)$, 21.9 (14-C), 24.3 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2-}$ $\left.\mathrm{CH}_{2} \mathrm{Ar}\right)$, 27.4 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 30.0 (4^{\prime}-C), 36.3 ($4-\mathrm{C}$), 38.1 ($10-\mathrm{C}, \mathrm{C}-7$), $38.7\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 40.2\left(3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 42.7 (2-C), 42.9 ($8-\mathrm{C}$), 43.3 ($11-\mathrm{NCH}_{2-}$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 45.5 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2}$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 50.0\left(6-\mathrm{OCH}_{3}\right), 60.1$ (C11), 66.3 ($\left.3^{\prime}-\mathrm{C}\right), 68.2$ ($\left.5^{\prime}-\mathrm{C}\right), 69.6$ ($2^{\prime}-\mathrm{C}$), 77.7 (13-C), 78.2 (12-C), 78.3 (3-C), 81.0 (5-C), 82.6 (6-C), 102.6 ($\left.1^{\prime}-\mathrm{C}\right), ~ 118.0$ (11,12-Ar-C), 123.6 (Py-C), 127.7 (11,12-Ar-C), 129.6 (Py-C), 135.4 (11,12-Ar-C), 137.4 (Py-C), 144.0 (11,12-Ar-C), 146.9 (11,12-Ar-C), 148.7 (Py-C), 150.4 (PyC), $157.3(12-\mathrm{OCO}-\mathrm{N}), 170.7$ (3-$\mathrm{OCO}-\mathrm{CH}_{2}$), 174.1 (1-C), 215.7 (9-C); MS (ESI): m/z 907.7 $\quad[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{48} \mathrm{H}_{70} \mathrm{~N}_{6} \mathrm{O}_{11}\right)$.
4.2.25 3-O-Descladinosyl-11,12-dideoxy-6-O-methyl-12,11-(oxycarbonyl(((4-phenyl-1H-1-imidazoyl)butyl)imino))3-O-(3pyridyl)acetylerythromycin A (7f)
The title compound $\mathbf{7 f}$ was prepared from 6f $(56 \mathrm{mg}, 0.084 \mathrm{mmol})$ following the procedure used to prepare 7a (47% yield). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.8$ $\left(4-\mathrm{CH}_{3}\right), 10.2\left(14-\mathrm{CH}_{3}\right), 14.2\left(10-\mathrm{CH}_{3}, 2-\right.$ $\left.\mathrm{CH}_{3}, 2 \mathrm{C}\right), 15.0\left(12-\mathrm{CH}_{3}\right), 18.8\left(8-\mathrm{CH}_{3}\right)$, $19.5\left(6-\mathrm{CH}_{3}\right), 20.9\left(5^{\prime}-\mathrm{CH}_{3}\right), 22.0$ (14-C), 24.3 (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 28.4 (11$\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 28.6 (4^{\prime}-C), 36.3 (4-C), 38.3 (10-C), 38.4 (C-7), 38.7 (3-$\left.\mathrm{OCO}-\mathrm{CH}_{2}\right), 40.2\left(3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 2 \mathrm{C}\right), 42.7$ (2-C), 42.9 ($8-\mathrm{C}$), 45.5 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2}$
$\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, 46.7 (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ $\left.\mathrm{CH}_{2} \mathrm{Ar}\right)$, $50.0\left(6-\mathrm{OCH}_{3}\right), 60.2(\mathrm{C}-11)$, 66.0 ($\left.3^{\prime}-\mathrm{C}\right), 69.4$ ($\left.5^{\prime}-\mathrm{C}\right), 70.1$ ($2^{\prime}-\mathrm{C}$), 76.7 (13-C), 78.4 (12-C, 3-C, 2C), 80.9 (5-C), 82.6 (6-C), 103.6 ($\left.1^{\prime}-\mathrm{C}\right), 114.7$ (11,12-ArC), 123.5 (3-Py-C), 124.7 ($11,12-\mathrm{Ar}-\mathrm{C}$), 126.4 (11,12-Ar-C), 129.3 (3-Py-C), 131.0 (11,12-Ar-C), 134.3 (11,12-Ar-C), 137.0 (3-Py-C), 137.2 (11,12-Ar-C, 2C), 142.1 (11,12-Ar-C, 2C), 148.8 (3-Py-C), 150.3 (3-Py-C), $157.3(12-\mathrm{OCO}-\mathrm{N}), 170.4$ (3-$\mathrm{OCO}-\mathrm{CH}_{2}$), 174.2 (1-C), 215.7 (9-C); MS (ESI): m/z $932.7 \quad[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{51} \mathrm{H}_{73} \mathrm{~N}_{5} \mathrm{O}_{11}\right)$.
4.2.26 3-O-Descladinosyl-11,12-dideoxy-6-O-methyl-12,11-(oxycarbonyl((4-(1H-imidazoly(4,5-b)pyridin-1-yl)butyl)imino))-3-O-(3pyridyl)acetylerythromycin $A(7 \boldsymbol{g})$
The title compound $7 \mathbf{g}$ was prepared from $6 \mathrm{~g}(32 \mathrm{mg}, 0.038 \mathrm{mmol})$ following the procedure used to prepare 7a (85\% yield). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.8\left(4-\mathrm{CH}_{3}\right), 10.2\left(14-\mathrm{CH}_{3}\right), 14.1$ (10$\left.\mathrm{CH}_{3}\right), 14.2\left(12-\mathrm{CH}_{3}\right), 15.0\left(2-\mathrm{CH}_{3}\right), 18.8$ $\left(8-\mathrm{CH}_{3}\right), 19.5\left(6-\mathrm{CH}_{3}\right), 21.0\left(5^{\prime}-\mathrm{CH}_{3}\right)$, 21.9 (14-C), 24.4 (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ $\mathrm{CH}_{2} \mathrm{Ar}$), 27.4 (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 28.2 (4^{\prime}-C), 36.2 (4-C), 38.3 (10-C), 38.3 $\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 38.7$ (7-C), 40.2 (3'$\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 42.7 \quad\left(11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ Ar), 42.9 (2-C), 43.3 (8-C), 45.5 (11$\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, $50.0 \quad\left(6-\mathrm{OCH}_{3}\right)$, 60.1 (11-C), 66.0 ($\left.3^{\prime}-\mathrm{C}\right), 69.5$ ($\left.5^{\prime}-\mathrm{C}\right)$, 70.2 (2'-C), 76.6 (13-C), 78.3 (3-C), 78.3 (6-C), 81.0 (5-C), 82.6 (12-C), 103.7 ($1^{\prime}-$ C), 118.0 ($11,12-\mathrm{Ar}-\mathrm{C}), 123.4$ (Py-C), 127.7 (11,12-Ar-C), 129.2 (Py-C), 135.4 (11,12-Ar-C), $\quad 137.0 \quad$ (Py-C), 144.0 (11,12-Ar-C), 144.1 (11,12-Ar-C), 146.9 (11,12-Ar-C), 148.8 (Py-C), 150.3 (PyC), $157.3(12-\mathrm{OCO}-\mathrm{N}), \quad 170.4$ (3-$\mathrm{OCO}-\mathrm{CH}_{2}$), 174.1 (1-C), 215.7 (9-C); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \delta 8.54-$ 8.52 (m, Py-H, 2H), 8.35 (dd, $J=1.2$, $4.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}, 1 \mathrm{H}), 8.09$ (s, Ar-H, 1H), 8.02 (dd, $J=1.2,8.1 \mathrm{~Hz}, ~ A r-H, 1 H)$,
7.73 (m, Py-H, 1H), 7.29 (dd, $J=4.8$, $7.5 \mathrm{~Hz}, ~ P y-H, 1 H), 7.19$ (dd, $J=4.8$, 8.1 Hz, Ar-H, 1H), 3.86 (d, $J=7.2 \mathrm{~Hz}$, $\left.1^{\prime}-\mathrm{H}, 1 \mathrm{H}\right), 3.71\left(\mathrm{~s}, 3-\mathrm{OCO}-\mathrm{CH}_{2}, 2 \mathrm{H}\right)$, 2.93 ($\left.\mathrm{s}, \quad 6-\mathrm{OCH}_{3}, \quad 3 \mathrm{H}\right), \quad 2.29$ (s, 3'$\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, \quad 6 \mathrm{H}\right) ; \quad$ HR-ESI-MS: m / z $907.5203[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{48} \mathrm{H}_{71}$ $\left.\mathrm{N}_{6} \mathrm{O}_{11}, 907.5175\right)$.

4.2.27 3-O-Descladinosyl-3-O-(3,4-methylenedioxy)phenylacetyl-6-O-methyl-11,12-dideoxy-12,11-(oxycarbonyl((4-(1H-imidazoly(4,5-b)pyridin-1yl)butyl)imino))erythromycin A (7h)

The title compound $\mathbf{7 h}$ was prepared from $\mathbf{6 h}(33.8 \mathrm{mg}, 0.039 \mathrm{mmol})$ following the procedure used to prepare 7a (86% yield). ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.8\left(4-\mathrm{CH}_{3}\right), 10.3\left(14-\mathrm{CH}_{3}\right)$, $14.1\left(10-\mathrm{CH}_{3}\right), 14.2\left(12-\mathrm{CH}_{3}\right), 14.9$ (2$\left.\mathrm{CH}_{3}\right), 18.8\left(8-\mathrm{CH}_{3}\right), 19.5\left(6-\mathrm{CH}_{3}\right), 21.0$ $\left(5^{\prime}-\mathrm{CH}_{3}\right), 21.9$ (14-C), 24.4 ($11-\mathrm{NCH}_{2-}$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 27.6 (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2-}$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 28.2 ($\left.4^{\prime}-\mathrm{C}\right), 36.3$ (4-C), 38.4 (10-C), 38.7 (7-C), 40.2 ($3^{\prime}-$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $40.9 \quad\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 42.4$ (2-C), 42.9 ($8-\mathrm{C}$), $45.0\left(11-\mathrm{NCH}_{2} \mathrm{CH}_{2-}\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, 45.6 ($11-\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2-}$ $\left.\mathrm{CH}_{2} \mathrm{Ar}\right)$, $50.1\left(6-\mathrm{OCH}_{3}\right), 60.0$ (11-C), 65.8 ($\left.3^{\prime}-\mathrm{C}\right), 69.5$ ($\left.5^{\prime}-\mathrm{C}\right), 70.3$ ($\left.2^{\prime}-\mathrm{C}\right), 77.1$ (13-C), 77.6 (3-C), 78.4 (5-C), 80.2 (6C), 82.7 (12-C), $101.1\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right)$, 103.4 ($\left.1^{\prime}-\mathrm{C}\right), 108.2$ ($\mathrm{Ph}-\mathrm{C}$), 109.8 ($\mathrm{Ph}-$ C), $117.9 \times 2(11,12-\mathrm{Ar}-\mathrm{C}), 122.5(\mathrm{Ph}-\mathrm{C})$, 126.0 ($\mathrm{Ph}-\mathrm{C}$), 126.9 (11,12-Ar-C), 144.8 (11,12-Ar-C), 145.0 (11,12-Ar-C), 146.8 (Ph-C), 147.8 (Ph-C), 156.2 (11,12-ArC), $157.4 \quad(12-\mathrm{OCO}-\mathrm{N}), \quad 171.3$ (3-$\mathrm{OCO}-\mathrm{CH}_{2}$), 174.6 (1-C), 215.8 (9-C); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.54(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, ~ \mathrm{Ar}-\mathrm{H}, 1 \mathrm{H}), 8.14$ (s, Ar-H, $1 \mathrm{H}), 7.79(\mathrm{~d}, \quad J=8.1 \mathrm{~Hz}, ~ A r-H, \quad 1 \mathrm{H})$, $7.20(\mathrm{dd}, \quad J=4.8, \quad 8.1 \mathrm{~Hz}, ~ \mathrm{Ar}-\mathrm{H}, \quad 1 \mathrm{H})$, 6.84 ($\mathrm{s}, \mathrm{Ar}-\mathrm{H}, 1 \mathrm{H}$), 6.75 (s, Ar-H, 2H), $5.94\left(\mathrm{~s}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, 2 \mathrm{H}\right), 4.97(\mathrm{~m}, 2 \mathrm{H})$, $3.88\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, \mathrm{C}^{\prime}-\mathrm{H}\right), 2.97$ ($\mathrm{s}, 6-$ $\left.\mathrm{OCH}_{3}, 3 \mathrm{H}\right), 2.26\left(\mathrm{~s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 6 \mathrm{H}\right)$;

HR-ESI-MS: $m / z \quad 950.5170 \quad[\mathrm{M}+\mathrm{H}]^{+}$ (calcd for $\mathrm{C}_{50} \mathrm{H}_{72} \mathrm{~N}_{5} \mathrm{O}_{13}, 950.5126$).
4.2.28 3-O-Descladinosyl-3-O-(3,4-methylenedioxy)phenylacetyl-6-O-methyl-11,12-dideoxy-12,11-(oxycarbonyl((4-(3H-imidazoly(4,5-b)pyridin-3yl)butyl)imino))erythromycin A (7i)
The title compound $\mathbf{7 i}$ was prepared from $6 \mathbf{i}(24.7 \mathrm{mg}, 0.025 \mathrm{mmol})$ following the procedure used to prepare 7a (84% yield). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.8$ (4$\left.\mathrm{CH}_{3}\right)$, $10.2\left(14-\mathrm{CH}_{3}\right), 14.1\left(10-\mathrm{CH}_{3}\right), 14.2$ $\left(12-\mathrm{CH}_{3}\right), 14.9\left(2-\mathrm{CH}_{3}\right), 18.8\left(8-\mathrm{CH}_{3}\right)$, $19.5\left(6-\mathrm{CH}_{3}\right), 21.0\left(5^{\prime}-\mathrm{CH}_{3}\right), 21.9$ (14-C), 24.4 (11- $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 27.4 (11$\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 28.2 (4^{\prime}-C), 36.2 (4-C), 38.4 (10-C), 38.7 (7-C), 40.2 ($3^{\prime}-$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 41.0\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 42.7$ (11$\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 42.9 (2-C), 43.3 (8-C), 45.6 (11-NCH2 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), $50.1\left(6-\mathrm{OCH}_{3}\right), 60.1$ (11-C), 65.8 ($\left.3^{\prime}-\mathrm{C}\right)$, 69.4 ($\left.5^{\prime}-\mathrm{C}\right), 70.3$ (2'-C), 76.6 (13-C), 77.7 (6-C), 78.3 (3-C), 80.3 (5-C), 82.6 (12-C), $101.0\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 103.3\left(1^{\prime}-\mathrm{C}\right), 108.2$ (Ph-C), 109.8 (Ph-C), 118.0 (11,12-Ar-C), 122.5 (Ph-C), 126.9 (Ph-C), 127.7 (11,12-Ar-C), 135.4 (11,12-Ar-C), 144.0 (11,12-Ar-C), 144.1 (2C, 11,12-Ar-C), 146.9 (PhC), 147.8 ($\mathrm{Ph}-\mathrm{C}$), $157.3(12-\mathrm{OCO}-\mathrm{N})$, $171.2\left(3-\mathrm{OCO}-\mathrm{CH}_{2}\right), 174.3$ (1-C), 215.7 (9-C); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.36$ (d, $J=4.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}, 1 \mathrm{H}$), 8.09 (s, Ar-H, $1 \mathrm{H}), 8.03$ (d, $J=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}, 1 \mathrm{H}), 7.20$ (dd, $J=4.5,7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}, 1 \mathrm{H}), 6.84$ (s, Ar-H, 1H), 6.75 (s, Ar-H, 2H), 5.93 (s, $\left.\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, 2 \mathrm{H}\right), 4.97(\mathrm{~d}, J=11.1 \mathrm{~Hz}$, $\mathrm{C} 13-\mathrm{H}, 1 \mathrm{H}), 3.87\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, \mathrm{C1}^{\prime}-\mathrm{H}\right)$, $2.96\left(\mathrm{~s}, 6-\mathrm{OCH}_{3}, 3 \mathrm{H}\right), 2.26\left(\mathrm{~s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$, 6H); HR-ESI-MS: $m / z 950.5117[\mathrm{M}+\mathrm{H}]^{+}$ (calcd for $\mathrm{C}_{50} \mathrm{H}_{72} \mathrm{~N}_{5} \mathrm{O}_{13}, 950.5126$).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30572275) and Natural Science Foundation of Beijing (7062047).

References

[1] T. Asaka, A. Manaka, and H. Sugiyama, Curr. Top. Med. Chem. 3, 961 (2003).
[2] Q. Leclerq and P. Courvalin, Antimicrob. Agents Chemother. 35, 1267 (1991).
[3] T. Kaneko, W. McMillen, and M.K. Lynch, Bioorg. Med. Chem. Lett. 17, 5013 (2007).
[4] M.B. Krajacic, P. Novak, M. Cindric, K. Brajsa, M. Dumic, and N. Kujundzic, Eur. J. Med. Chem. 42, 138 (2007).
[5] A. Denis, C. Agouridas, J.M. Auger, and Y. Benedetti, Bioorg. Med. Chem. Lett. 9, 3075 (1999).
[6] Z. Ma, R.F. Clark, A. Brazzale, J.J. Plattner, and Y.S. Or, J. Med. Chem. 44, 4137 (2001).
[7] C. Fogarty, P. Buchanan, M. Aubier, M. Baz, D.V. Resburg, U. Rangaraju, and R. Nusrat, Int. J. Infect. Dis. 10, 136 (2006).
[8] R.L. Elliott, D. Pireh, G. Griesgraber, A.M. Nilius, P.J. Ewing, M.H. Bui, P.M. Raney, R.K. Flamm, K. Kim, R.F. Henry, D.T.W. Chu, J.J. Plattner, and Y.S. Or, J. Med. Chem. 41, 1651 (1998).
[9] Z.M. Istuk, S. Mutak, N. Kujundzic, and G. Kragol, Bioorg. Med. Chem. 15, 4498 (2007).
[10] D. Tang, Y. Gai, A. Polemeropoulos, Z. Chen, Z. Wang, and Y.S. Or, Bioorg. Med. Chem. Lett. 18, 5078 (2008).
[11] T. Asaka, M. Kashimura, A. Manaka, T. Tanikawa, T. Ishii, T. Sugimoto, K. Suzuki, H. Sugiyama, T. Akashi, H. Saito, T. Adachi, and S. Morimoto, 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA (1999), Abstr. No. F2159.
[12] T. Tanikawa, T. Asaka, M. Kashimura, Y. Misawa, K. Suzuki, M. Sato, K. Kameo, S. Morimoto, and A. Nishida, J. Med. Chem. 44, 4027 (2001).
[13] T. Tanikawa, T. Asaka, M. Kashimura, K. Suzuki, H. Sugiyama, M. Sato, K. Kameo, S. Morimoto, and A. Nishida, J. Med. Chem. 46, 2706 (2003).
[14] B. Zhu, A.M. Brett, A. Darren, D.F. Barbara, C.H. Todd, B. Karen, and J.M. Mark, Bioorg. Med. Chem. Lett. 16, 1054 (2006).
[15] P. Xu, L. Liu, Z.P. Jin, and P.S. Lei, Bioorg. Med. Chem. Lett. 17, 3330 (2007).
[16] W. Baker, J. Clark, R. Stephens, and K. Kim, J. Org. Chem. 53, 2340 (1988).
[17] The MIC assays were performed in accordance with the NCCLS guidelines: Methodes for dilution Antimicrobial

Susceptibility Tests for Bacterial that Grow Aerobically, 5th ed.; NCCLS Document M7-A5; NCCLS, January $20(2)$ (2000).
[18] Performance Standards for Antimicrobial Susceptibility Testing: 11th Informational

Supplement; NCCLS Document M100S11; NCCLS, January 21(1). (2001).
[19] D. Amsterdam, Antibiotics in Laboratory Medicine, 4th ed (Williams \& Wilkins, Baltimore, MD, 1996), pp. 52-111.

[^0]: *Corresponding author. Email: lei@imm.ac.cn

